Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2431-2436    https://doi.org/10.11896/j.issn.1005-023X.2018.14.019
  金属与金属基复合材料 |
泡沫金属夹层板自冲铆接头的疲劳性能及失效机理
刘洋, 何晓聪, 邢保英, 邓聪, 张先炼
昆明理工大学机电工程学院,昆明 650500
Fatigue Properties and Failure Mechanisms of Self-piercing Riveted Joints in Metal Foam Sandwich Structures
LIU Yang, HE Xiaocong, XING Baoying, DENG Cong, ZHANG Xianlian
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 7201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铝合金自冲铆接头及泡沫金属夹层结构自冲铆接头进行疲劳实验,通过三参数经验公式采用S-N曲线拟合法绘制接头的F-N曲线,分析接头的疲劳寿命及泡沫金属夹层对自冲铆接头疲劳性能的影响;采用扫描电子显微镜对接头的疲劳失效断口进行观测,分析其微观失效机理。结果表明:泡沫金属夹层缩短了自冲铆接头的疲劳寿命,不同泡沫金属夹层对自冲铆接头疲劳性能的影响具有差异性,在高疲劳载荷下泡沫铜夹层接头疲劳性能更优。三组接头疲劳失效形式都为下板断裂,在高疲劳载荷下裂纹易在铆扣区域萌生,在中低疲劳载荷下裂纹萌生于下板一侧,沿铆扣区域下侧向板材另一侧扩展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
何晓聪
邢保英
邓聪
张先炼
关键词:  自冲铆  泡沫金属  夹层结构  疲劳性能  失效机理    
Abstract: Fatigue experiments were carried out on the self-piercing riveted (SPR) joint of aluminum alloy and the foam metal sandwich structures. Based on the three parameter empirical formula, S-N curve fitting method was used to draw the F-N curves of the joints. The fatigue life of the joints and the influence of the metal foam interlayers on the fatigue properties of the SPR joint were analyzed. The fatigue failure fracture of the joints was observed by scanning electron microscope (SEM), and the microscopic failure mechanism was analyzed. The results show that the metal foam interlay reduces the fatigue life of the SPR joint, and different metal foam has the different influence on fatigue performance of SPR joint. Under the high fatigue load, the copper foam sandwich joint has better fatigue performance. The fatigue failure modes of the three groups of joints are the lower sheet fracture, and the cracks easily occur in the locked region under the high fatigue load. The crack initiates at one side of the lower sheet under the low fatigue load, and extends to the other side of the sheet along the underside of the locked region.
Key words:  self-piercing riveting    metal foam    sandwich structures    fatigue property    failure mechanism
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TH131.1  
基金资助: 国家自然科学基金(51565023;51565022);云南省教育厅科学研究基金重大专项(ZD201504)
通讯作者:  何晓聪,男,1955年生,博士,教授,博士研究生导师,主要研究方向为薄板材料连接新技术 E-mail:xiaocong_he@126.com   
作者简介:  刘洋:男,1994年生,硕士研究生,主要研究方向为薄板材料连接新技术 E-mail:liuyangctgu@163.com
引用本文:    
刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
LIU Yang, HE Xiaocong, XING Baoying, DENG Cong, ZHANG Xianlian. Fatigue Properties and Failure Mechanisms of Self-piercing Riveted Joints in Metal Foam Sandwich Structures. Materials Reports, 2018, 32(14): 2431-2436.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.019  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2431
1 Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46(6):559.
2 Crupi V, Epasto G, Guglielmino E. Impact response of aluminum foam sandwiches for light-weight ship structures[J]. Metals,2011,1(1):98.
3 Raj S V, Ghosn L J. Failure maps for rectangular 17-4PH stainless steel sandwiched foam panels[J]. Materials Science & Engineering A,2007,474(1):88.
4 Degischer, Hans-Peter. Handbook of cellular metals: Production, processing, applications[M]. German: Wiley-VCH,2002:98.
5 He X C, Pearson I, Young K. Self-pierce riveting for sheet mate-rials: State of the art[J]. Journal of Materials Processing Technology,2008,199(1-3):27.
6 Ueda M, Miyake S, Hasegawa H, et al. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet[J]. Composite Structures,2012,94(11):338.
7 Mori K, Abe Y, Kato T. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting[J]. Journal of Materials Processing Techno-logy,2012,212(9):1900.
8 Chun C S, Kim H K. Fatigue strength of self-piercing riveted joints in lap-shear specimens of aluminium and steel sheets[J]. Fatigue & Fracture of Engineering Materials & Structures,2016,39(9):1105.
9 Huang L, Shi Y, Guo H, et al. Fatigue behavior and life prediction of self-piercing riveted joint[J]. International Journal of Fatigue,2016,88:96.
10 He X C, Deng C, Zhang X L. Fretting behavior of SPR joining dissimilar sheets of titanium and copper alloys[J]. Metals,2016,6(12):312.
11 Cheng Qiang, He Xiaocong, Xing Baoying, et al. Fatigue properties and failure mechanisms of self-piercing riveted T joints in aluminum-lithium alloys[J]. Materials Review B:Research Papers,2017,31(6):84(in Chinese).
程强,何晓聪,邢保英,等.铝锂合金T型自冲铆接头疲劳特性及失效机理[J].材料导报:研究篇,2017,31(6):84.
12 Zhang J, Yang S. Self-piercing riveting of aluminum alloy and thermoplastic composites[J]. Journal of Composite Materials,2015,49(12):1493.
13 Gao Zhentong, Fu Huimin, Liang Meixun. A method for fitting S-N curve[J]. Journal of Beijing Institute of Aeronautics and Astronautics,1987(1):115(in Chinese).
高镇同,傅惠民,梁美训.S-N曲线拟合法[J].北京航空学院学报,1987(1):115.
[1] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[2] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[3] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[4] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[5] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[6] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[7] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[8] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[9] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[10] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[11] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[12] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[13] 张先炼, 何晓聪, 赵伦, 邢保英, 程强. TA1异质自冲铆接头力学性能及失效机理*[J]. 《材料导报》期刊社, 2017, 31(20): 92-95.
[14] 赵伦, 何晓聪, 张先炼, 张龙, 程强. TA1钛合金单搭自冲铆接头微动磨损机理*[J]. 《材料导报》期刊社, 2017, 31(2): 73-76.
[15] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed