Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2425-2430    https://doi.org/10.11896/j.issn.1005-023X.2018.14.018
  金属与金属基复合材料 |
304不锈钢消音蜂窝钎焊工艺、组织及力学性能分析
邓云华1, 岳喜山1,2, 管志超1
1 中国航空制造技术研究院,航空焊接与连接技术航空科技重点实验室,北京 100024;
2 西北工业大学航空学院,西安 710072
Study on the Brazing Process, Microstructure and Mechanical Properties of 304 Stainless-steel Soundproof Honeycomb Core Sandwich Panels
DENG Yunhua1, YUE Xishan1,2, GUAN Zhichao1
1 Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024;
2 School of Astronautics, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 4360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用镍基BNi2钎料钎焊制备了304不锈钢消音蜂窝,对蜂窝芯体与面板钎焊界面组织和蜂窝的力学性能进行了分析和测试,并研究了钎焊热循环次数对钎焊界面组织和蜂窝拉伸力学性能的影响,为实际工程应用确定未焊合缺陷补焊次数提供了依据。液态钎料的毛细作用使钎料沿蜂窝芯箔材表面铺展并与箔材发生显著的元素扩散反应,蜂窝芯与面板之间的钎缝由Ni、Cr、Si 等互溶而成的Ni 基固溶体组织组成,未生成脆性共晶组织或金属间化合物。钎料中的B和Si元素显著扩散于面板材料中,形成钎料-面板反应区,因B元素的沿晶界快速扩散效应,面板侧组织呈现晶界元素渗入特征。随着钎焊次数增加,钎料对母材的溶解和晶界渗透增加,钎焊界面组织发生显著变化。制备的304不锈钢消音蜂窝拉脱强度为7.21 MPa,呈现板/芯界面附近蜂窝芯破坏特点,多次钎焊时蜂窝拉脱强度呈下降趋势。制备的304不锈钢消音蜂窝平压、侧压和弯曲力学性能测试过程均经历弹性变形、塑性变形和失稳三个阶段,强度值分别为5.67 MPa、33.85 MPa和105.87 MPa,平压和弯曲失效模型为蜂窝失稳,侧压破坏除蜂窝失稳外,发生穿孔面板与蜂窝芯体剥离的现象。鉴于多次钎焊热循环对蜂窝拉脱强度的不利影响,建议304不锈钢蜂窝钎焊缺陷的最大补焊次数为一次。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓云华
岳喜山
管志超
关键词:  304不锈钢消音蜂窝  钎焊  界面组织  力学性能    
Abstract: 304 stainless-steel soundproof honeycomb panel was brazed using BNi2 brazing filler metal. Microstructure and mechanical properties of present honeycomb panel as well as the effect of multiple brazing processes on the microstructure and mechanical properties were investigated. It was found that BNi2 brazing filler metal spread and solidficates on the surface of honeycomb core foils due to the capillarity effect. Notable atom diffusion was taken place between BNi2 brazing filler metal and honeycomb core foils. Brazing seam between face sheet and honeycomb core was consisted of Ni based solid solution structure with Cr, Si, etc, and no brittle intermetallic compounds. B and Si was migrated into face sheet which promoted the formation of reaction region between BNi2 brazing filler metal and face sheet, with grain boundary penetration characteristic due to the fast grain boundary diffusion behavior of B. With the increase of brazing thermal cycle times, the dissolution of brazing filler metal to honeycomb core foils and face sheets was improved and the grain boundary diffusion of brazing filler metal/face sheet zone was gradually intensive due to the increase of accumulated holding time at high temperature by multiple vacuum brazing. Tensile strength of present 304 stainless-steel soundproof honeycomb panel was 7.21 MPa, and all the tensile specimens were fractured at honey core region near face sheet. With the increase of brazing thermal cycle times, the tensile strength decreased. The flat compression strength, edgewise compression strength and bending strength of present 304 stainless-steel soundproof honeycomb panel were 5.67 MPa,33.85 MPa and 105.87 MPa respectively. Specimens of flat compression testing and bending testing encountered elastic deformation, plastic deformation and plastic instability during testing, while specimens of edgewise compression testing experienced plastic instability of honey core and peeling between perforated face sheet and honey core during testing. Considering the adverse effect of multiple brazing processes on the microstructure and mechanical properties of 304 stainless steel honeycomb panel, one repairing brazing was suggested for the subsequent repairing process of 304 stainless steel honeycomb panel.
Key words:  304 stainless-steel soundproof honeycomb panel    brazing    interface microstructure    mechanical properties
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TG44  
作者简介:  邓云华:男,1987年生,博士,工程师,主要研究方向为蜂窝夹层结构制造、钎焊/扩散焊技术和焊接热过程数值模拟 E-mail:yunhuadeng@emails.bjut.edu.cn
引用本文:    
邓云华, 岳喜山, 管志超. 304不锈钢消音蜂窝钎焊工艺、组织及力学性能分析[J]. 《材料导报》期刊社, 2018, 32(14): 2425-2430.
DENG Yunhua, YUE Xishan, GUAN Zhichao. Study on the Brazing Process, Microstructure and Mechanical Properties of 304 Stainless-steel Soundproof Honeycomb Core Sandwich Panels. Materials Reports, 2018, 32(14): 2425-2430.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.018  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2425
1 Huo L Z. Study on the structure and acoustic characteristics of anechoic honeycomb sandwich structure[J]. Civil Aircraft Design & Research,2000(4):42(in Chinese).
霍麟祯.消声蜂窝夹层结构元件的结构形式及其声学特性的研究分析[J].民用飞机设计与研究,2000(4):42.
2 United Technologies Corporation. High admittance acoustic liner: US,7337875[P]. 2008-03-04.
3 Wilson R S. Noise attenuation panel: US,6609592B2[P]. 2003-08-26.
4 Peng S. Progress in noise reduction technology of large civil aircraft nacelle[J]. Science & Technology Information,2011(24):751(in Chinese).
彭森.大型民用客机短舱降噪技术进展[J].科技信息,2011(24):751.
5 Huang W C. Application of acoustically treated honeycomb sandwich panels in noise control of aircraft cabin[J]. Acta Aeronautica and Astronautica Sinica,1990,11(11):584(in Chinese).
黄文超.声处理蜂窝夹层结构在飞机座舱降噪设计中的应用[J].航空学报,1990,11(11):584.
6 Petitjean B, Legran I, Simon F, et al. Active control experimental for acoustic radiation reduction of a sandwich panel: Feedback and feedforward investigations[J]. Journal of Sound and Vibration,2002,252(1):19.
7 Li C L, Wang T Q, Lai S L, et al. Experimental study on the acoustic property of bonding honeycomb nacelle model in compressor inlet[J]. Journal of Aerospace Power,2002,17(1):45(in Chinese).
李春林,王同庆,赖士洪,等.风扇进气道胶接蜂窝声衬样件声学性能实验研究[J].航空动力学报,2002,17(1):45.
8 Elangovan R, Olsen R F, Reynolds N D. Modeling of acoustically treated nacelle lip transpiration flow anti-icing system[C]∥ The 26th International Congress of the Aeronautical Sciences.Ancho-rage, Alaska,2008.
9 Drevon E. Measurement methods and devices applied to A380 nacelle double degree-of-freedom acoustic liner development[C]∥ The 10th AIAA/CEAS Aerocaustics . Manchester,2004.
10 Blair W. Method of manufacture of honeycomb noise attenuation structure for high temperature applications: US,4522859[P]. 1985-06-11.
11 Lord W K, Suciu G L. Acoustic liner heat exchanger: US,20160017810[P]. 2016-01-27.
12 Swindlehurst C E, Plunkett R B, Lennon J F. Acoustic liner and method of making an acoustic liner: US,4522859[P]. 2001.
13 中国机械工程学会焊接学会. 焊接手册第1卷[M]. 第2版. 北京:机械工业出版社,2001.
14 Yang M X, Jia Z D, Lin X C, et al. Vacuum brazing 0Cr18Ni9 stainless steel pipe to itself with BNi-2 filler alloy[J]. Journal of Haerbin Institute of Technology,2016,48(5):184(in Chinese).
杨敏旋,贾振东,蔺晓超,等.采用BNi-2钎料真空钎焊0Cr18Ni9不锈钢管材[J].哈尔滨工业大学学报,2016,48(5):184.
15 Arafin M A, Medraj M, Turner D P, et al. Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations[J]. Materials Science and Engineering A,2007,447:125.
16 Yu Z S, Shi K, Yan Z, et al. Effect of brazing clearance on the vacuum brazed joint microstructure of 316L stainless steel[J]. Journal of Materials Engineering,2010(10):77(in Chinese).
于治水,石昆,言智,等.钎缝间隙对316L不锈钢真空钎焊接头组织的影响[J].材料工程,2010(10):77.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed