Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 678-683    https://doi.org/10.11896/cldb.201904022
  金属与金属基复合材料 |
大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能
董天顺1,郑晓东1,2,李国禄1,,王海斗2,周秀锴1,2,李亚龙1,2
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Microstructure and Mechanical Properties of Atmospheric-plasma-sprayed
and TIG-remelted Fe-based Coating
DONG Tianshun1, ZHENG Xiaodong1,2, LI Guolu1, WANG Haidou2, ZHOU Xiukai1,2, LI Yalong1,2
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering,Beijing 100072
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 采用氩弧重熔技术对大气等离子喷涂Fe基涂层进行了重熔处理,分析了重熔前后涂层的显微组织和力学性能。结果表明,重熔后Fe基喷涂层的层状结构以及气孔、未熔颗粒、夹杂物基本被消除,孔隙率由4%降低到0.4%,重熔层组织致密。喷涂层主要由微晶区、纳米晶区和过渡区组成,结晶度较差,原子排列较混乱,而重熔层由单晶区和(Fe,Cr)23C6相构成,析出相与基体界面处无显微裂纹,结晶度较好,原子排列较规则;喷涂层与基体结合处有明显缝隙,结合方式为机械结合,而重熔层与基体界面产生“白亮带”,结合方式为冶金结合;相对于喷涂层,重熔层的平均显微硬度和弹性模量分别提高了33.4%和53.2%,表面粗糙度降低了43.2%。氩弧重熔处理显著地改善了Fe基涂层的显微组织及力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董天顺
郑晓东
李国禄
王海斗
周秀锴
李亚龙
关键词:  氩弧重熔  Fe基涂层  组织结构  力学性能  大气等离子喷涂    
Abstract: In the present work, we applied tungsten inert gas arc (TIG) process to remelt a Fe-based coating which had been deposited by atmospheric plasma spraying technique, and characterized and determined the remelted coating’s microstructure and mechanical properties. The results showed that after TIG remelting, the lamellar structure, pores, unmelted particles and inclusions of the as-sprayed coating are eliminated, the porosity significantly decreases from 4% to 0.4% and the microstructure becomes quite compact. The as-sprayed coating consists mainly of microcrystalline region, nanocrystalline region and transition region, and has a low crystallinity and disordered atomic arrangement. The remelted coa-ting, on the contrary, contains single crystal region and (Fe,Cr)23C6 phase, displays no microcrack at the pricipitates/matrix interfaces, and has better crystallization and atomic arrangement. A clear gap could be observed between the as-sprayed coating and the substrate, thus, the bon-ding formed between the as-sprayed coating and substrate is ascribed to mechanical bonding. However, the “white light belt” emerged at the interface between the remelted coating and substrate, the remelted coating was bonded with the substrate metallurgically. Compared with the as-sprayed coating, the average microhardness and elastic modulus of the remelted coating increased by 33.4% and 53.2% respectively, and the surface roughness of the remelted coating decreased by 43.2%. Therefore, TIG remelting process has considerable effect for improving the microstructure and mechanical properties of Fe-based coating.
Key words:  TIG remelting    Fe-based coating    microstructure    mechanical properties    atmospheric plasma spraying
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51675158;51535011);河北省自然科学基金(E2016202325)
作者简介:  董天顺,河北工业大学材料学院,副教授。2008年6月毕业于河北工业大学,获得材料学博士学位。主要从事摩擦学与表面工程、铝镁合金及其复合材料的研究。李国禄,河北工业大学材料学院,教授。1999年6月毕业于清华大学,获得材料加工工程专业博士学位。主要从事摩擦学与表面工程领域的研究。
引用本文:    
董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
DONG Tianshun, ZHENG Xiaodong, LI Guolu, WANG Haidou, ZHOU Xiukai, LI Yalong. Microstructure and Mechanical Properties of Atmospheric-plasma-sprayed
and TIG-remelted Fe-based Coating. Materials Reports, 2019, 33(4): 678-683.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904022  或          http://www.mater-rep.com/CN/Y2019/V33/I4/678
1 Chen S Y, Ma G Z, Wang H D, et al. Tribology International,2016,101,25.2 Guo H J, Jia J H, Zhang Z Y, et al. Materials Review A: Review Papers,2013,27(2),38(in Chinese).国洪建,贾均红,张振宇,等.材料导报:综述篇,2013,27(2),38.3 Zhang X, Wang Z H, Lin J R, et al. Transactions of the China Welding Institution,2014,35(12),19(in Chinese).张欣,王泽华,林尽染,等.焊接学报,2014,35(12),19.4 Piao Z Y, Xu B S, Wang H D, et al. Tribology International,2010,43(1),252.5 Xu B S. Theory and technology of surface engineering, National Defense Industry Press, China,2010(in Chinese).徐滨士.表面工程的理论与技术,国防工业出版社,2010.6 Cui C, Ye F X, Song G R. Surface and Coatings Technology,2012,206(8),2388.7 Liu J, Bolot R, Costil S, et al. Surface & Coatings Technology,2016,292,132.8 Yi D L, Ye Y P, Yin B, et al. Tribology,2011,31(4),362.9 Serres N, Hlawka F, Costil S, et al. Wear,2011,270(10),640.10 Kang N, Verdy C, Coddet P, et al. Surface & Coatings Technology,2017,359,264.11 Wen Z H, Bai Y, Yang J F, et al. Surface & Coatings Technology,2015,281,62.12 Tian L H, Mao S H, Lu S, et al. Transactions of the China Welding Institution,2016,37(6),89(in Chinese).田立辉,毛淑滑,芦笙,等.焊接学报,2016,37(6),89.13 Yu B, He J, Liu Z D, et al. Vacuum & Cryogenics,2009,15(3),149(in Chinese).于斌,何俊,刘志栋,等.真空与低温,2009,15(3),149.14 Chen J B, Dong Y C, Wan L N, et al. Surface & Coatings Technology,2018,340,159.15 Zhang X C, Xu B S, Xuan F Z, et al. Surface & Coatings Technology,2011,205,3119.16 Yang X C, Li G L, Wang H D, et al.Surface Engineering,2016,1,1.17 Tian H L, Wei S C, Chen Y X, et al. Physics Procedia,2013,50,322.18 Zong X M, Li W, Wang J, et al. Surface Technology,2017,46(7),195(in Chinese).蹤雪梅,李稳,王井,等.表面技术,2017,46(7),195.19 Wang X H, Zou Z D, Song S L, et al. Wear,2006,260(7),705.20 Zhang K, Ma G, Jia Z H, et al. Materials Review,2012,26(S2),166(in Chinese).张科,马光,贾志华,等.材料导报,2012,26(S2),166.21 Yuan Z Z, Bao S L, Lu Y, et al. Journal of Alloys Compounds,2008,459,251.22 Zhi J Y, Shun Y T, Xia M Z, et al.Journal of the European Ceramic Society,2008,28,1143.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed