Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 714-718    https://doi.org/10.11896/cldb.201904029
  高分子与聚合物基复合材料 |
聚酰亚胺纤维增强SiO2气凝胶的制备及表征
高文杰1,2,杨自春1,2,,李昆锋1,2,费志方1,2,陈国兵1,2,赵爽1,2
1 海军工程大学舰船高温结构复合材料研究室,武汉 430033;
2 海军工程大学动力工程学院,武汉 430033
Preparation and Characterization of Polyimide Fiber Reinforced Silica Aerogel
GAO Wenjie1,2, YANG Zichun1,2, LI Kunfeng1,2, FEI Zhifang1,2, CHEN Guobing1,2, ZHAO Shuang1,2
1 Institute of High Temperature Structural Composite Materials of Naval Ship,Naval University of Engineering,Wuhan 430033;
2 School of Power Engineering,Naval University of Engineering,Wuhan 430033
下载:  全 文 ( PDF ) ( 2855KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以正硅酸乙酯(TEOS)为硅源,聚酰亚胺(PI)纤维为增强相,采用溶胶-凝胶和超临界干燥工艺制备出PI纤维增强SiO2气凝胶复合材料,利用傅里叶红外光谱分析仪、N2吸附脱附仪、场发射扫描电子显微镜、万能试验机、热重分析仪及导热系数测量仪表征了气凝胶化学组成、微观结构、力学及热学性能。制备的气凝胶具有低密度、高表面积和较好的隔热性能、热稳定性及压缩性能。PI纤维含量为3%(质量分数,下同)时气凝胶密度为0.13 g/cm3,比表面积高达997 m2/g,平均孔径为18.2 nm。常温下导热系数为0.029 1 W/(m·K),室温到500 ℃范围内质量损失5%,抗压强度为0.21 MPa。气凝胶轻质、高比表面积及较好的热学与力学性能使其在舰船的隔热保温领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高文杰
杨自春
李昆锋
费志方
陈国兵
赵爽
关键词:  SiO2气凝胶  聚酰亚胺纤维  高比表面积  力学性能  热学性能    
Abstract: The PI fiber-reinforced SiO2 aerogel composite was prepared by sol-gel method and supercritical drying, taking tetraethylorthosilicate (TEOS) as silicon source and polyimide (PI) fiber as the reinforcing phase. The Fourier transform infrared spectroscopy, N2 adsorption desorption spectrometer, field emission scanning electron microscope, universal testing machine, TGA and thermal conductivity meter were adopted to cha-racterize the chemical composition, microstructure, mechanical properties and thermal properties of the SiO2 aerogels. The obtained aerogel pre-sents low density and high surface area, as well as favorable thermal insulation, thermal stability and compressibility. When 3wt% PI fiber is ad-ded, the aerogel shows satisfactory properties with density of 0.13 g/cm3, specific surface area of 997 m2/g and average pore diameter of 18.2 nm. And it also exhibits good thermal conductivity (0.029 1 W/(m·K)) at room temperature, a 5% mass loss in the range of room temperature to 500 ℃ and compressive strength of 0.21 MPa. The low density, high specific surface area, good thermal insulation and mechanical properties of the aerogel enable its broad application prospects in the field of ship thermal insulation.
Key words:  SiO2 aerogel    polyimide fiber    high surface area    mechanical properties    thermal properties
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51802347)
作者简介:  高文杰,海军工程大学硕士研究生,主要从事舰船绝热防护材料的相关研究。杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖2项、二等奖1项,先后入选教育部“新世纪优秀人才支持计划”,“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Ceramic Society、Ceramics International等期刊发表研究论文100余篇。
引用本文:    
高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
GAO Wenjie, YANG Zichun, LI Kunfeng, FEI Zhifang, CHEN Guobing, ZHAO Shuang. Preparation and Characterization of Polyimide Fiber Reinforced Silica Aerogel. Materials Reports, 2019, 33(4): 714-718.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904029  或          http://www.mater-rep.com/CN/Y2019/V33/I4/714
1 Dorcheh A S, Abbasid M H. Journal of Materials Processing Technology,2008,199,10.2 Pierre A C, Paton M G. Chemical Reviews,2002,102(11),4243.3 Schultz J M, Jensen K I, Kristiansen F H. Solar Energy Materials & Solar Cells,2005,89(2-3),275.4 Yang Z C, Su G H, Sun F R. Computers, Materials & Continua. 2013,36(3),271.5 Parole Vinay G, Lee Kyu-Yeon, Jung Hae-Noo-Ree,et al.Ceramics International,2018,44(4),3966.6 Nastaran Nazeran, Jafarsadegh Moghaddas. Journal of Non-Crystalline Solids,2017,461,1.7 Buratti C, Merli F, Moretti E. Energy and Buildings,2017,152,472.8 Parole V G, Lee K Y, Park H H. Journal of the Korean Ceramic Society,2017,54(3),184.9 Manijeh Mohammadian, Tahereh S, et al.Journal of Drug Delivery Science and Technology,2018,44,205.10 Bali S, Huggins F E, Huffman G P, et al. Journal of Sol-Gel Science and Technology,2017,84(3),432.11 Jiang Yonggang, Feng Junzong, Feng Jian. Journal of Sol-Gel Science and Technology,2017,83(1),64.12 Li Jie, Lei Yu, Xu Dingding, et al.Journal of Sol-Gel Science and Technology,2017,82(3),702.13 Li Z, Gong L, Cheng X D, et al.Materials & Design, 2016,99,349.14 Maleki H, Duraes L, Portugal A.Journal of Non-Crystalline Solids,2014,385,55.15 Guan Yunqi, Jiang Yonggang, et al. Materials Review,2017,31(S1),429(in Chinese).关蕴奇,姜勇刚,等.材料导报,2017,31(S1),429.16 Zhang Zhihua, Shen Jun. Rare Metal Materials and Engineering,2008,37(2),16(in Chinese).张志华,沈军.稀有金属材料与工程,2008,37(2),16.17 Feng Jian, Gao Qingfu. National University of Defense Technology,2010,31(3),635(in Chinese).冯坚,高庆福.国防科技大学学报,2010,31(3),635.18 Ma Jia, Shen Xiaodong, Cui Sheng, et al. Materials Review B:Research Papers,2015,29(10),43(in Chinese).马佳,沈晓东,崔升,等.材料导报:研究篇,2015,29(10),43.19 Yu Yuxi, Wu Xiaoyun, San Haisheng. Materials Engineering,2015,43(8),31(in Chinese).余煜玺,吴晓云,伞海生.材料工程,2015,43(8),31.20 Eu Haq, Sfa Zaidi,Zubair M, et al. Energy & Buildings,2017,151,494.21 Li Z, Cheng X, He S, et al.Composites Part A,2016,84(3),316.22 Jiang Xiaoqing, Wang Dan, Yao Jianxi. Rare Metal Materials and Engineering,2009,38(2),354(in Chinese).姜小青,王丹,姚建曦.稀有金属材料与工程,2009,38(2),354.23 Dylan J Boday, Beatrice Muriithi, et al. Journal of Non-Crystalline Solids,2012,358(15),75.24 Sai H, Xing L, Xiang J, et al. Journal of Materials Chemistry A,2013,1(27),7963.25 Wu Y W, Ye M F, Zhang W C, et al.Journal of Applied Polymer Science,2017,134(37),45296.26 Slosarczyk A, Wojciech S, Piotr Z, et al. Journal of Non-Crystalline Solids,2015,416,1.27 Wu S, Du A, Huang S, et al. Materials Letters,2016,176,118.28 Lu X,Arduinischuste M C, Kuhn J, et al. Science,1992,255(5047),971.29 Estella J, Echeverria J C,Laguna M,et al.Microporous Mesoporous Mate-rial,2007,102,274.30 Deng Z S, Wang J, Wu A M, et al. Journal of Non-Crystalline Solids,1998,255,101.31 Shi Xiaojing, Zhang Ruifang, He Song, et al. Journal of the Chinese Ceramic Society,2016,44(1),129(in Chinese).石小靖,张瑞芳,何松,等.硅酸盐学报,2016,44(1),129.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed