Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 577-581    https://doi.org/10.11896/cldb.201904002
  无机非金属及其复合材料 |
ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能
赵立臣,谢宇,张喆,王铁宝,王新,崔春翔
河北工业大学材料科学与工程学院,河北省新型功能材料重点实验室,天津 300130
Fabrication of ZnO Nano-rods/Porous Zn Foam and Its Compressive and
Antibacterial Properties
ZHAO Lichen, XIE Yu, ZHANG Zhe, WANG Tiebao, WANG Xin, CUI Chunxiang
Key Laboratory for New Type of Functional Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 4119KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以商业铸态纯锌和NaCl颗粒为原料,采用空气压缩渗流法制备得到表观密度为2.86 g/cm3、孔隙率为60%的多孔锌泡沫。扫描电镜观察发现相互连通的孔洞均匀地分布于多孔锌泡沫内部。将多孔锌泡沫置于200 g/L的NaCl水溶液中,80 ℃保温2 h后试样表面原位生成密集的ZnO纳米棒,得到ZnO纳米棒/多孔锌泡沫材料。压缩测试结果表明,ZnO纳米棒/多孔锌泡沫的压缩力学性能与未经NaCl水溶液处理的多孔锌泡沫的压缩力学性能相比没有明显下降。抗菌测试结果表明,ZnO纳米棒/多孔锌泡沫材料具有优异的抗菌性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立臣
谢宇
张喆
王铁宝
王新
崔春翔
关键词:  多孔锌  ZnO纳米棒  压缩力学性能  抗菌性  生物医用    
Abstract: Taking the commercial as-cast pure zinc ingot and NaCl particles as raw materials, porous Zn foam with the apparent density of 2.86 g/cm3 and porosity of 60% was fabricated by air pressure infiltration method(APIM). Scanning electron microscopy(SEM) observation illustrated that the interconnected pores were uniformly distributed in the porous Zn foam. After the porous Zn foam was treated in 200 g/L NaCl solution at 80 ℃ for 2 h, dense ZnO nano-rods were in-situ generated on the pore walls of the porous Zn foam, thus a ZnO nano-rods/porous Zn foam was obtained. The results of compressive tests indicated that there was no obvious drop in the mechanical properties of the ZnO nano-rods/porous Zn foam compared with the porous Zn foam. The results of antibacterial tests suggest that the ZnO nano-rods/porous Zn foam exhibited an excellent antibacterial activity.
Key words:  porous Zn    ZnO nano-rods    compressive mechanical property    antibacterial activity    biomedical applications
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG146.22  
  R318.08  
基金资助: 河北省创新团体计划项目(180079);河北省自然科学基金项目(E2016202406)
作者简介:  赵立臣,河北工业大学,副教授。2011年毕业于河北工业大学材料科学与工程学院,获得材料学博士学位。同年加入河北工业大学工作至今。主要研究方向为可降解生物医用金属材料和金属基复合材料。崔春翔,河北工业大学,教授,博士生导师,1996年毕业于上海交通大学材料科学与工程学院,获得材料学博士学位。主要研究方向为金属基复合材料、磁性材料和高强高韧有色金属材料等。
引用本文:    
赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
ZHAO Lichen, XIE Yu, ZHANG Zhe, WANG Tiebao, WANG Xin, CUI Chunxiang. Fabrication of ZnO Nano-rods/Porous Zn Foam and Its Compressive and
Antibacterial Properties. Materials Reports, 2019, 33(4): 577-581.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904002  或          http://www.mater-rep.com/CN/Y2019/V33/I4/577
1 Song G L. Corrosion Science,2007,49(4),1696.2 Staiger M P, Pietak A M, Huadmai J, et al. Biomaterials,2006,27(9),1728.3 Zhang S X, Zhang X N, Zhao C L, et al. Acta Biomaterialia,2010,6(2),626.4 Li Z J, Gu X N, Lou S Q, et al. Biomaterials,2008,29(10),1329.5 Vormann J. Molecular aspects of medicine,2003,24(1-3),27.6 Witte F, Kaese V, Haferkamp H, et al. Biomaterials,2005,26(17),3557.7 Tao H R, Zhang Y, He Y H, et al. Journal of Clinical Rehabilitative Tissue Engineering Research,2009(12),2232(in Chinese).陶海荣,张岩,何耀华,等.中国组织工程研究与临床康复,2009(12),2232.8 He Y H, Tao H R, Zhang Y, et al.. Chinese Science Bulletin,2008,53(16),1981(in Chinese).何耀华,陶海荣,张岩,等.科学通报,2008,53(16),1981.9 Liang J, Srinivasan P B, Blawert C, et al. Corrosion science,2009,51(10),2483.10 Gao J C, Wu S, Qiao L Y, et al. Transactions of Nonferrous Metals Society of China,2008,18(3),588.11 Song G, Atrens A, John D S, et al. Corrosion Science,1997,39(5),855.12 Song G, Atrens A, John D S, et al. Corrosion Science,1997,39(10-11),1981.13 Zhao H J, Zhang Y H, Kang Y L, et al. Special Casting & Nonferrous Alloys,2006,26(6),340(in Chinese).赵鸿金,张迎晖,康永林,等.特种铸造及有色合金,2006,26(6),340.14 Liu G Y, Hu J, Ding Z K, et al. Applied Surface Science,2011,257(6),2051.15 Vojtch D, Kubásek J, erák J, et al. Acta Biomaterialia,2011,7(9),3515.16 Zhang S, Zhang X, Zhao C, et al. Acta Biomaterialia,2010,6(2),626.17 Zhang E, Yin D, Xu L, et al. Materials Science and Engineering C,2009,29(3),987.18 Kubásek J, Vojtěch D, Jablonská E, et al. Materials Science & Enginee-ring C,2016,58,24.19 Qiao Y, Zhang W, Tian P, et al. Biomaterials,2014,35(25),6882.20 Liu X, Sun J, Yang Y, et al. Materials Letters,2015,161,53.21 Zhang Z, Gu B, Zhang W, et al. Applied Surface Science,2012,258(17),6504.22 Li H F, Xie X H, Zheng Y F, et al. Scientific Reports,2015,5,1.23 Li H, Yang H, Zheng Y, et al. Materials & Design,2015,83,95.24 Dambatta M S, Izman S, Kurniawan D, et al. Materials & Design,2015,85,431.25 Murni N S, Dambatta M S, Yeap S K, et al. Materials Science & Engineering C,2015,49,560.26 Liu X, Sun J, Qiu K, et al. Journal of alloys and compounds,2016,664,444.27 Hetrick E M, Schoenfisch M H. Chemical Society Reviews,2006,35(9),780.28 Guo Z J, Chen C, Gao Q, et al. Materials Letters,2014,137,464.29 Darouiche R O. New England Journal of Medicine,2004,350(14),1422.30 Muralisankar T, Bhavan P S, Gandhimathy S, et al. Malaya Journal of Biosciences,2014,1(3),196.31 Hu J, Zhong Z X, Zhang F, et al. Ceramics International,2015,41(5),7080.32 Sui M H, Zhang L D, Sheng L, et al. Science of the total environment,2013,452-453(5),148.33 Matai I, Sachdev A, Dubey P, et al. Colloids and surfaces B,2014,115,359.34 Ng Y H, Leung Y H, Liu F Z, et al. Thin Solid Films,2013,542(10),368.35 Zhao L C, Zhang Z, Song Y T, et al. Materials & Design,2016,108,136.36 Wu S L, Liu X M, Yeung K W K, et al. Materials Science and Enginee-ring R,2014,80(1),1.37 Karageorgiou V, Kaplan D. Biomaterials,2005,26(27),5474.38 Yoshida T, Komatsu D, Shimokawa N, et al. Thin Solid Films,2004,451-452,166.39 Sielmann C, Walus K, Stoeber B. Thin Solid Films,2015,592,76.40 Nobial M, Devos O, Tribollet B. Journal of Crystal Growth,2011,327(1),173.41 Li R J, Zhang X T, Dong H L,et al. Advanced Materials,2016,28,1697.42 Li P T, Wu Y Y, Liu X F. Materials Research Bulletin,2013,48,2044.43 Kumar R, Umar A, Kumar G, et al. Ceramics Internaltional,2017,43(5),3940.44 Król A, Pomastowski P, Rafińska K, et al. Advances in Colloid and Interface Science,2017,249,37.45 Song W H, Zhang J Y, Guo J, et al. Toxicology Letters,2010,199(3),389.46 Stoimenov P K, Klinger R L, Marchin G L, et al. Langmuir,2002,18(17),6679.47 Zhang L L, Jiang Y H, Ding Y L, et al. Journal of Nanoparticle Research,2007,9(3),479.
[1] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[2] 赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔. 可降解生物医用Zn-1Al合金的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(7): 1192-1196.
[3] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[4] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[5] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[6] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[7] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[8] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed