Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3823-3830    https://doi.org/10.11896/j.issn.1005-023X.2018.21.020
  高分子与聚合物基复合材料 |
壳聚糖/无机物纳米复合材料在抗菌方面的研究进展
李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成
中国石油大学(华东)化学工程学院,青岛 266580
Antimicrobial Properties and Applications of Chitosan/Inorganic Nanocomposites: an Overview
LI Xufei, CHE Yangli, LYU Yan, LIU Fang, WANG Yongqiang, ZHAO Chaocheng
College of Chemical Engineering, China University of Petroleum, Qingdao 266580
下载:  全 文 ( PDF ) ( 2065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 壳聚糖作为一种天然高分子有机物,具有良好的生物相容性、可降解性和抗菌性,在抗菌方面已有一定的应用,但其抗菌性能易受自身因素和外界条件的影响,因此如何巩固和加强壳聚糖的抗菌性能并进行应用成为了研究的热点。将壳聚糖与无机物纳米材料复合,有机和无机组分协同互补,能显著提高材料的抗菌性能,复合材料还具有优异的机械强度和生物相容性,可广泛应用于水处理、食品、纺织、化妆品和医学等领域,引起了科研人员的密切关注。本文总结了壳聚糖的抗菌机理和影响抗菌性能的因素,详细介绍了壳聚糖与金属、金属氧化物、层状硅酸盐和碳材料等无机物复合后的纳米材料在抗菌方面的应用,同时对其在抗菌领域的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李旭飞
车阳丽
吕艳
刘芳
王永强
赵朝成
关键词:  壳聚糖  壳聚糖-无机物  纳米复合材料  抗菌性    
Abstract: As a natural organic polymer, chitosan shows excellent biocompatibility, biodegradability and antimicrobial properties and it has already been used as an antimicrobial agent. Nevertheless, the antimicrobial properties of chitosan are easily influenced by its own factors and external conditions, which hinders its broad application. Therefore, strengthen the antimicrobial activity and promote the application of chitosan have become the focus research. When chitosan is incorporated into inorganic nanomaterials to form composite materials, a synergistical complementary effect of organic and inorganic components can be acquired, which will dramatically improve the antimicrobial activity of the materials. Thanks to the favorable mechanical strength and biocompatibility, chitosan/inorganic nanocomposites have been extensively applied in the field of water treatment, food, textile, cosmetics, medicine and aroused great interests of researchers. In this article, the mechanisms and influencing factors of antimicrobial properties of chitosan are summarized. The preparation and application of nanocomposites of chitosan and inorganic materials like metal, metal oxide, layered silicate, carbon materials in antimicrobial field are introduced in detail, and their prospective for development in the antimicrobial field is proposed as well.
Key words:  chitosan    chitosan-inorganic    nanocomposites    antimicrobial properties
                    发布日期:  2018-11-21
ZTFLH:  TB33  
基金资助: 山东省自然科学基金(ZR201702140013); 中国石油大学(华东)拔尖人才资助项目(RC17040003); 中国石油大学(华东)研究生金点子项目(JDZ1705016)
作者简介:  李旭飞:男,1993年生,硕士研究生,从事环境抗菌材料的研发与应用 E-mail:lixufei0616@163.com;刘芳:通信作者,女,1976年生,教授,博士研究生导师,主要从事环境功能材料的研发与应用 E-mail:liufangfw@163.com
引用本文:    
李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
LI Xufei, CHE Yangli, LYU Yan, LIU Fang, WANG Yongqiang, ZHAO Chaocheng. Antimicrobial Properties and Applications of Chitosan/Inorganic Nanocomposites: an Overview. Materials Reports, 2018, 32(21): 3823-3830.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.020  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3823
1 Muxika A, Etxabide A, Urangan J, et al.Chitosan as a bioactive polymer:Processing, properties and applications[J].International Journal of Biological Macromolecules,2017,105:1358.
2 Ravi K M.A review of chitin and chitosan applications[J].Reactive & Functional Polymers,2000,46(1):1.
3 Rinaudo M.Chitin and chitosan: Properties and applications[J].Cheminform,2007,31(7):603.
4 Peniche C, Argiielles M W, Peniche H, et al.Chitosan: An attractive biocompatible polymer for microencapsulation[J].Macromolecular Bioscience,2003,3(10):511.
5 Zhu S, Donatien P K.Development and characterization of biodegradable chitosan films containing two essential oils[J].International Journal of Biological Macromolecules,2015,74:289.
6 Shen C, Wu L, Chen Y, et al.Efficient removal of fluoride from drinking water using well-dispersed monetite bundles inlaid in chitosan beads[J].Chemical Engineering Journal,2016,303:391.
7 Huang H, Hu N F, Zeng Y H, et al.Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films[J].Analy-tical Biochemistry,2002,308(1):141.
8 Roller S, Covill N.The antifungal properties of chitosan in laboratory media and apple juice[J].International Journal of Food Microbio-logy,1999,47(1-2):67.
9 Zeng D, Wu J, Kennedy J F.Application of a chitosan flocculant to water treatment[J].Carbohydrate Polymers,2008,71(1):135.
10 Dutta P K, Shipra T, Mehrotra G K, et al.Perspectives for chitosan based antimicrobial films in food applications[J].Food Chemistry,2009,114(4):1173.
11 Ivanova N A, Philipchenko A B.Superhydrophobic chitosan-based coatings for textile processing[J].Applied Surface Science,2012,263(24):783.
12 Jimtaisong A, Saewan N.Utilization of carboxymethyl chitosan in cosmetics[J].International Journal of Cosmetic Science,2013,36(1):12.
13 Shi C, Zhu Y, Ran X, et al.Therapeutic potential of chitosan and its derivatives in regenerative medicine[J].Journal of Surgical Research,2006,133(2):185.
14 Rejane C G, Douglas D B, Odilio B G.A review of the antimicrobial activity of chitosan[J].Polímeros,2009,19(3):241.
15 Liu X F, Guan Y L, Yang D Z, et al.Antibacterial action of chitosan and carboxymethylated chitosan[J].Journal of Applied Polymer Science,2001,79(7):1324.
16 Chiu H T, Chen R L, Wu P Y, et al.A study on the effects of the degree of deacetylation of chitosan films on physical and antibacterial properties[J].Polymer-Plastics Technology and Engineering,2007,46(12):1121.
17 Omura Y, Shigemoto M, Akiyama T, et al.Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights[J].Biocontrol Science,2003,8(1):25.
18 Mohammad J, Katharina M F, Ali A A, et al.Antibacterial properties of nanoparticles[J].Trands in Biotechnology,2012,30(10):499.
19 Li Q, Mahendra S, Lyon D Y, et al.Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J].Water Research,2008,42(18):4591.
20 Dizai S M, Lotfipour F, Barzegar J M, et al.Antimicrobial activity of the metals and metal oxide nanoparticles[J].Materials Science & Engineering C Materials for Biological Applications,2014,44:278.
21 Pelgrift R Y, Friedman A J.Nanotechnology as a therapeutic tool to combat microbial resistance[J].Advanced Drug Delivery Reviews,2013,65(13-14):1803.
22 Helander I M, Nurmiaho L E L, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria[J].International Journal of Food Microbiology,2001,71(2):235.
23 Kong M, Chen X G, Liu C S, et al.Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli[J].Colloids & Surfaces B Biointerfaces,2008,65(2):197.
24 Ikeda T, Tazuke S, Suzuki Y.Biologically active polycations, 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s[J].Die Makromolekulare Chemie,1984,185(5):869.
25 Tokura S, Ueno K, Miyazaki S, et al.Molecular weight dependent antimicrobial activity by Chitosan[J].Macromolecular Symposia,1997,120(1):1.
26 Hadwiger L A, Kendra D F, Fristensky B W, et al.Chitosan both activates genes in plants and inhibits RNA synthesis in fungi[J].Chitin in Nature and Technology,1986,209.
27 Zhai X F, Sun C T, Li K, et al.Synthesis and characterization of chitosan-zinc composite electrodeposits with enhanced antibacterial properties[J].RSC Advances,2016,6(52):46081.
28 Cuero R G, Osuji G, Washington A.N-carboxymethyl chitosan inhibition of aflatoxin production: Role of zinc[J].Biotechnology Letters,1991,13(6):441.
29 Verlee A, Mincke S, Stevens C V.Recent developments in antibacterial and antifungal chitosan and its derivatives[J].Carbohydrate Polymers,2017,164,268.
30 Chen Y M, Chung Y C, Wang L W, et al.Antibacterial properties of chitosan in waterborne pathogen[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering,2002,37(7):1379.
31 Zheng L Y, Zhu J F.Study on antimicrobial activity of chitosan with different molecular weights[J].Carbohydrate Polymers,2003,54(4):527.
32 Mohamed N A, Abd E-G N A. Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives[J].International Journal of Biological Macromolecules,2012,50(5):1280.
33 Yang T C, Li C F, Chou C C.Cell age, suspending medium and metal ion influence the susceptibility of Escherichia coli O157:H7 to water-soluble maltose chitosan derivative[J].International Journal of Food Microbiology,2007,113(3):258.
34 Chen Y L, Chou C C.Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan deri-vative[J].Food Microbiology,2005,22(1):29.
35 Pillai C K S, Paul W, Sharma C P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation[J].Progress in Polymer Science,2009,34(7):641.
36 Chang S H, Lin H T V, Wu G J, et al. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan[J].Carbohydrate Polymers,2015,134:74.
37 No H K, Park N Y, Lee S H, et al.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J].International Journal of Food Microbiology,2002,74(1):65.
38 Biao L H, Tan S N, Wang Y L, et al.Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles[J].Materials Science & Engineering C-Materials for Biological Applications,2017,76:73.
39 Dananjaya S H S, Erandani W K C U, Kim C H, et al. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex[J].International Journal of Biological Macromolecules,2017,105:478.
40 Kuamr K S, Prokhorov E, Hernandez I M, et al.Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions[J].European Polymer Journal,2015,67:242.
41 Rhim J W, Hong S I, Park H M, et al.Preparation and characteri-zation of chitosan-based nanocomposite films with antimicrobial activity[J].Journal of Agricultural and Food Chemistry,2006,54(16):5814.
42 Benn T, Cavanagh B, Hristovski K, et al.The release of nanosilver from consumer products used in the home[J].Journal of Environmental Quality,2010,39:1875.
43 Korani M, Rezayat S M, Gilani K, et al.Acute and subchronic dermal toxicity of nanosilver in guinea pig[J].International Journal of Nanomedicine,2011,6:855.
44 Kumar R, Umar A, Kumar G, et al.Antimicrobial properties of ZnO nanomaterials: A review[J].Ceramics International,2017,43(5):3940.
45 Ghasemi N, Jamali-Sheini F, Zekavati R.CuO and Ag/CuO nanopa-rticles: Biosynthesis and antibacterial properties[J].Materials Letters,2017,196:78.
46 Farouk A, Moussa S, Ulbricht M, et al.ZnO nanoparticles-chitosan composite as antibacterial finish for textiles[J].International Journal of Carbohydrate Chemistry,2012,2012(10):1.
47 Gutha Y, Pathak J L, Zhang W, et al.Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO)[J].International Journal of Biological Macromolecules,2017,103:234.
48 Raghaqvendra G M, Jung J, Kim D, et al.Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties[J].Carbohydrate Polymers,2017,172:78.
49 Arthikeyan K T, Nithya A, Jothivenkatachalam K.Photocatalytic and antimicrobial activities of chitosan-TiO2 nanocomposite[J].International Journal of Biological Macromolecules,2017,104:1762.
50 Kumar S G, Devi L G.Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics[J].Journal of Physical Chemistry A,2011,115(46):13211.
51 Raut A V, Yadav H M, Gnanamani A, et al.Synthesis and characterization of chitosan-TiO2 :Cu nanocomposite and their enhanced antimicrobial activity with visible light[J].Colloids and Surfaces B: Biointerfaces,2016,148:566.
52 Herrera P, Burghardt R C, Phillips T D.Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays[J].Veterinary Microbiology,2000,74(3):259.
53 Guo T, Ma Y L, Guo P, et al.Antibacterial effects of the Cu(Ⅱ)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis[J].Veterinary Microbiology,2005,105(2):113.
54 Tientong J, Ahmad Y H, Nar M, et al.Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates[J].Materials Chemistry & Physics,2014,145(1-2):44.
55 Pavlidou S, Papaspyrides C D.A review on polymer-layered silicate nanocomposites[J].Progress in Polymer Science,2008,33(12):1119.
56 Alexanre M, Dubois P.Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials[J].Materials Science & Engineering R Reports,2000,28(1-2):1.
57 Wang X Y, Du Y M, Yang J H, et al.Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites[J].Polymer,2006,47(19):6738.
58 Lertsutthiwong P, Noomun K, Khunthon S, et al.Influence of chitosan characteristics on the properties of biopolymeric chitosan-montmorillonite[J].Progress in Natural Science:Materials International,2012,22(5):502.
59 Hsu S H, Wsng M C, Lin J J.Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites[J].Applied Clay Science,2012,56(1):53.
60 Wang X Y, Du Y M, Luo J W, et al.A novel biopolymer/rectorite nanocomposite with antimicrobial activity[J].Carbohydrate Polymers,2009,77(3):449.
61 Devi N, Dutta J.Preparation and characterization of chitosan-bento-nite nanocomposite films for wound healing application[J].International Journal of Biological Macromolecules,2017,104:1897.
62 Papageorgiou D G, Kinloch L A, Young R J.Mechanical properties of graphene and graphene-based nanocomposites[J].Progress in Materials Science,2017,90:75.
63 Pumera M.Electrochemistry of graphene, graphene oxide and other graphenoids: Review[J].Electrochemistry Communications,2013,36(6):14.
64 De J N, Allioux M, Oostveen J T, et al.Optical performance of carbon-nanotube electron sources[J].Physical Review Letters,2005,94(18):186807.
65 Ueki Y, Aoki T, Ueda K, et al.Thermophysical properties of carbon-based material nanofluid[J].International Journal of Heat and Mass Transfer,2017,113:1130.
66 Hu W, Peng C, Luo W, et al.Graphene-based antibacterial paper[J].ACS Nano,2010,4(7):317.
67 Kim J D, Yun H, Kim G C, et al.Antibacterial activity and reu-sability of CNT-Ag and GO-Ag nanocomposites[J].Applied Surface Science,2013,283(11):227.
68 Liu S, Zeng T H, Hofmann M, et al.Antibacterial activity of grap-hite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress[J].ACS Nano,2011,5(9):6971.
69 Akhanan O, Ghaderi E.Toxicity of graphene and graphene oxide nanowalls against bacteria[J].ACS Nano,2010,4(10):5731.
70 Li Y, Yuan H, Von D B A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites[J].Proceedings of the National Academy of Sciences,2013,110(30):12295.
71 Liu S, Hu M, Zeng T H, et al.Lateral dimension-dependent antibacterial activity of graphene oxide sheets[J].Langmuir: the ACS Journal of Surfaces & Colloids,2012,28(33):12364.
72 Lim H N,Huang N M,Loo C H.Facile preparation of graphene-based chitosan films:Enhanced thermal,mechanical and antibacterial properties[J].Journal of Non-Crystalline Solids,2012,358(3):525.
73 Jiang Y, Gong J L, Zeng G M, et al.Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications[J].International Journal of Biological Macromolecules,2016,82:702.
74 Venkatesan J, Jayakumar R, Mohandas A, et al.Antimicrobial activity of chitosan-carbon nanotube hydrogels[J].Materials,2014,7(5):394.
[1] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[2] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[3] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[4] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[5] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[6] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[7] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[8] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[9] 毕玉水. 时间控制/pH依赖型盐酸黄连素结肠给药系统的控释性能[J]. 《材料导报》期刊社, 2018, 32(12): 1973-1977.
[10] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[11] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[12] 刘蕊蕊, 冀志江, 谭建杰, 王静, 张琎珺, 廖祥. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*[J]. CLDB, 2017, 31(9): 152-157.
[13] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[14] 黄大建, 马宗红, 马晨阳, 王新伟. 甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 21-24.
[15] 杨 帅,张可可,崔 婧,张大伟. 温度、浓度对水/乙醇混合溶剂中壳聚糖溶液黏度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 109-113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed