Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2183-2188    https://doi.org/10.11896/j.issn.1005-023X.2018.13.007
  无机非金属及其复合材料 |
纳米金刚石基于功能材料应用的研究现状
张旺玺1, 王艳芝2, 梁宝岩1, 李启泉1, 罗伟3, 孙长红1, 成晓哲1, 孙玉周4
1 中原工学院材料与化工学院,郑州 451191;
2 中原工学院纺织学院,郑州 451191;
3 四川化工职业技术学院化学工程系,泸州 646000;
4 中原工学院建筑工程学院,郑州 451191
Review on the Development of Nanodiamonds Used as Functional Materials
ZHANG Wangxi1, WANG Yanzhi2, LIANG Baoyan1, LI Qiquan1, LUO Wei3, SUN Changhong1, CHENG Xiaozhe1, SUN Yuzhou4
1 School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191;
2 School ofTextiles Engineering, Zhongyuan University of Technology, Zhengzhou 451191;
3 Department of ChemicalEngineering, Sichuan Vocational College of Chemical Technology, Luzhou 646000;
4 School of Civil Engineering& Architecture, Zhongyuan University of Technology, Zhengzhou 451191
下载:  全 文 ( PDF ) ( 1364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于天然金刚石非常稀少名贵,满足不了日益增长的工业需求,经过人们不断努力通过成熟的合成技术制备人造金刚石的年产量已经远远超过天然金刚石。目前在工业上,主要利用金刚石的高硬度特性将其作为磨料和超硬材料使用,最多的是用于磨具、刀具、钻进、切割、抛光等工具材料。但是,金刚石除了硬度高之外,光、电、催化、润滑、生物相容性等其他性能也非常优异,非常适合用于功能材料。人造金刚石的合成主要有三种方法:一是静态触媒法超高压高温合成金刚石单晶;二是采用化学气相沉积法制备大尺寸金刚石块(片)体材料;三是利用爆轰法合成纳米级粒度超细金刚石微粉。大颗粒单晶、大尺寸块(片)体、纳米级超细微粉等是金刚石作为功能材料应用中最被看好的材料形态,代表了当前的发展趋势。   但是,对金刚石及其复合材料的功能性研究和应用开发还很不够。特别是纳米金刚石的多种优异特性,如高模量、高硬度、高热导率、良好的绝缘性、独特的光电特性、低摩擦系数及耐磨损特性、良好的化学稳定性和生物相容性,使其呈现出功能多样性。纳米金刚石作为功能材料的应用,最初主要用作光电材料,现在已经在生物医疗、药物递释、催化、热管理、润滑等领域获得了初步的应用,研究和开发处于快速发展阶段,应用前景广阔。   纳米金刚石具有纳米材料的性质,容易发生团聚,采用搅拌球磨法、超声法、静电纺丝法等手段能够解决纳米金刚石的团聚问题。针对特定的应用目的,还需要对纳米金刚石进行化学改性。研究者采用羧化、氢化、氨化、酰胺化、酰氯化和羟化等化学改性方法,在纳米金刚石表面形成一些化学官能团,通过改变、调整和设计纳米金刚石表面的化学活性,降低纳米金刚石的凝聚,改进其在溶剂(或其他基体)中的溶解度和分散能力。改性后的纳米金刚石在生物成像、生物印记、生物传感、靶向特定细胞药物传输和组织工程等领域的应用研究获得了快速的发展。纳米金刚石经化学改性后表面官能团增多,能与聚合物通过共价键结合,其在聚合物中的分散得以改善,能明显提高聚合物的导热性能,非常适合作为复合材料的增强相。此外,改性后的纳米金刚石还被广泛用作光催化材料、摩擦材料、光电材料、自清洁材料等,展现出很大的研究价值。   本文归纳了纳米金刚石用作功能材料的研究进展,在介绍纳米金刚石的改性方法、团聚与分散的基础上,重点介绍了纳米金刚石及其复合材料在前述诸多领域的应用情况,以期为拓展和深入纳米金刚石基于功能材料的应用研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张旺玺
王艳芝
梁宝岩
李启泉
罗伟
孙长红
成晓哲
孙玉周
关键词:  金刚石  纳米金刚石  超硬材料  纳米复合材料  功能材料    
Abstract: Natural diamonds are too rare and precious to satisfy the growing industrial demand. Annual output of artificial diamonds made by industrial synthesis technology has exceeded remarkably that of natural diamonds. Now, because of their extreme hardness, diamonds are mainly used as abrasive materials and super-hard materials in industry, mostly for grinding tools, blades and for drilling, cutting, polishing, etc. In addition to the high hardness, diamonds also display other excellent properties, such as optical properties, electrical properties, catalytic properties, lubrication properties, biocompatibility, etc., and thus are especially suitable for functional materials. Synthetic diamonds have been successfully prepared through three different strategies: Ⅰ. Ultrahigh-pressure and high-temperature process, i.e. the so-called static catalyst approach, which results in single crystal diamonds; Ⅱ. Chemical vapor deposition efficient for producing bulk (or sheet) diamond with large size; Ⅲ. The detonation method that can synthesize ultrafine (usually nanosized) diamond powders. Large single crystal, large-size bulk (sheet) and nanosized powders are currently the most promising, exemplary and state-of-the-art forms for functionalized artificial diamonds.   However, the research and innovation for the functionalization of diamond and its composites are inadequate, especially for nanodiamond that shows a variety of excellent properties, such as high modulus, high hardness, high thermal conductivity, good insulation, unique photoelectric characteristics, low friction coefficient and excellent wear resistance, satisfactory chemical stability and biocompatibility. The original application of nanodiamonds and their composites is to serve as photoelectric materials, and have now been extended to the fields of biological medicine, drug delivery, catalysis, thermal management, lubrication, etc., indicating a rapid, hopeful and high-potential development prospect.   Nanosized diamonds generally tend to agglomerate, which is similar to other nanomaterials. This can be solved or alleviated by stirring-assisted ball milling, ultrasonic treatment, electrospinning, and so on. Moreover, for certain application purpose, chemical modification is also indispensable. For the sake of grafting ideal chemical functional groups onto the surface of nanodiamond, changing, adjusting and designing the chemical activity of their surfaces, and in consequence, further mitigating agglomeration and improving solubility and dispersibility in solvents (or solid matrices), researchers have tentatively adopted various chemical modification approaches including carboxylation, hydrogenation, ammoniation, amidation, acylation and hydroxylation. And the modified nanodiamonds have successfully and swiftly found biomedical application, e.g. biological imaging, molecular imprinting, bio-sensing, cell-targeted drug delivery, tissue engineering and so on. The surface functionalization of the nanodiamonds facilitates the combination of them with polymer matrices by forming covalent bonds, which can promote dispersion and thermal conductivity of the nanodiamond-reinforced composites. Furthermore, functionalized nanodiamonds have also been applied in the fields of photocatalytic mate-rials, friction materials, photoelectric materials, self-cleaning materials, etc.   In this paper, the recent advances of nanodiamonds serving as functional materials is summarized. The modification methods, agglomeration and dispersion of nanodiamonds are introduced, focusing on the above-mentioned application situation. It is expected to provide a reference for the further research.
Key words:  diamond    anodiamond    superhard material    nanocomposite    functional material
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TQ164  
基金资助: 国家自然科学基金(51602356;11472316);河南省高校科技创新团队项目(151RTSTHN004);河南省高等学校重点科研项目(18A430035)
作者简介:  张旺玺:男,1967年生,博士,教授,主要研究方向为超硬复合材料、纤维高分子材料及碳基复合材料 E-mail:5546@zut.edu.cn
引用本文:    
张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials. Materials Reports, 2018, 32(13): 2183-2188.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.007  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2183
1 Wu Y Q,Guo L X,Yang J Z,et al. Study of the new preparation technology of carbon nanomaterials[J].Superhard Material Enginee-ring,2016,28(5):32(in Chinese).
武艳强,郭留希,杨晋中,等.新型碳纳米材料制备工艺方法研究[J].超硬材料工程,2016,28(5):32.
2 Liu J L,Tian H M,Chen L X,et al. Preparation of nano-diamond films on GaN with a Si buffer layer[J].New Carbon Materials,2016,31(5):518(in Chinese).
刘金龙,田寒梅,陈良贤,等.基于硅过渡层纳米金刚石膜/GaN复合膜系的制备[J].新型炭材料,2016,31(5):518.
3 Zhang S D,Zhang W G,Liu M H. The application of nano-diamond on finishing machining[J].Superhard Material Engineering,2016,28(5):27(in Chinese).
张书达,张文刚,刘美华.纳米金刚石用于光整加工[J].超硬材料工程,2016,28(5):27.
4 Jitka N, Jan V, Petr C. Coating nanodiamonds with biocompatible shells for applications in biology and medicine[J].Current Opinion in Solid State and Materials Science,2017,21(1):43.
5 Asli B C, Memet V K. Effect of surface modification on nano-diamond particles for surface and thermal property of UV-curable hybrid coating[J].Progress in Organic Coatings,2016,101:468.
6 Seidy P S, Andrei S S, Noralvis F S,et al. Deagglomeration and characterization of detonation nanodiamonds for biomedical applications[J].Journal of Applied Biomedicine,2017,15(1):15.
7 Toshiki T, Yuki K, Naoya M, et al. Chemical modification of diamond surface with X-(C6H4)-COOH (X=F, Cl, Br, I) using benzoyl peroxide[J].Diamond & Related Materials,2010,19(7-9):1003.
8 Toshiki T, Shunsuke T, Shintaro I, et al. Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase[J].Diamond and Related Materials,2004,13(4-8):1093.
9 Shintaro I, Toshiki T, Osamu H, et al. Chemical reaction of hydrogenated diamond surface with peroxide radical initiators Yasumichi Matsumoto, Akira Fujishima[J].Diamond and Related Materials,2003,12(3-7):601.
10 Zahra D, Akbar S. Enhanced mechanical properties of chitosan/nano-diamond composites by improving interphase using thermal oxidation of nanodiamond[J].Carbohydrate Polymers,2017,167:219.
11 Toshiki T, Shota M, Naoya M, et al. Chemical modification of diamond surface with linoleic acid by using benzoyl peroxide[J].Diamond & Related Materials,2011,20(4):584.
12 Arnault J C, Girard H A. Hydrogenated nanodiamonds: Synthesis and surface properties[J].Current Opinion in Solid State and Mate-rials Science,2017,21(1):10.
13 王光祖.纳米金刚石[M].郑州:郑州大学出版社,2009.
14 Kristopher D B, Antonella S, Vadym M, et al. Nanodiamond-polymer composite fibers and coatings[J].ACS Nano,2009,3(2):363.
15 Jitka N, Jan V, Petr C. Coating nanodiamonds with biocompatible shells for applications in biology and medicine[J].Current Opinion in Solid State and Materials Science,2017,21(1):43.
16 Ryu T K, Kang R H, Jeong K Y, et al. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment[J].Journal of Controlled Release,2016,232(28):152.
17 Luo X G, Zhang H, Cao Z N, et al. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings[J].Carbohydrate Polymers,2016,143:231.
18 Paul A N, Paul W M, Francesco T, et al. Long-term culture of pluripotent stem-cell-derived human neurons on diamond—A substrate for neuro degeneration research and therapy[J].Biomaterials,2015,61:139.
19 Pereira J N, Silva A R, Ribeiro C, et al. Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applications[J].Composites Part B Engineering,2017,111:37.
20 Vadym N M, Yury G. Nanodiamond-polymer composites[J].Diamond & Related Materials,2015,58(9):161.
21 Sundar L S, Maria J H, Manoj K S, et al. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study[J].International Communications in Heat and Mass Transfer,2016,76:245.
22 Lin Z Y, Xiao J, Li L H, et al. Nanodiamond-embedded p-type copper(Ⅰ) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J].Advanced Energy Materials,2016,6(4):1501865.
23 Zhu D, Zhang L H, Ruther R E, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J].Nature Materials,2013,12(9):836.
24 Fang X M, Gao S Y, Li W Q, et al. Growth and photocatalytic properties of ZnO nanorodarrays/p-diamond heterojunction[J].China Science Paper,2015,10(22):2662(in Chinese).
方向明,高世勇,李文强,等.氧化锌纳米棒阵列/p型金刚石异质结的制备及其光催化性能[J].中国科技论文,2015,10(22):2662.
25 Zhou L, Zhang H Y, Guo X C, et al. Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications[J].Journal of Colloid and Interface Science,2017,493(1):275.
26 Arash G, Alexis V, Nazanin E. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts[J].Tribology International,2017,110:195.
27 Michail I, Olga S. Nanodiamond-based nanolubricants for motor oils[J].Current Opinion in Solid State and Materials Science,2017,21(1):17.
28 Yasir A H, Liu D B, Chen W X, et al. Surface functionalization and structure characterizations of nanodiamond and its epoxy based nanocomposites[J].Composites Part B Engineering,2015,78:480.
29 Xu N S, Ejaz H S. Novel cold cathode materials and applications[J].Materials Science and Engineering R,2005,48:47.
30 Ren Z Y, Zhang J F, Zhang J C, et al. Diamond field effect transistors with MoO3 gate dielectric[J].IEEE Electron Device Letters,2017,38(6):786.
31 张秀霞,杨小聪,魏舒怡,等.一种太阳能电池板系统的窗口表面自清洁装置:中国,102832259B[P].2016-03-30.
32 Stachel T, Luth R W. Diamond formation—Where, when and how?[J].Lithos,2015,220:200.
33 Nunzio G, Michael M, Ashok K, et al. Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films[J].Thin Solid Films,2016,615:226.
34 Bradley R S, Daniel G, Taras P. The effects of surface oxidation on luminescence of nano diamonds[J].Diamond & Related Materials,2010,19(4):314.
35 Kirill L, Sergey B, Sergey D, et al. Monitoring of nanodiamonds in human urine using artificial neural networks[J].Physica Status Solid A,2016,213(10):2614.
36 Jitka N, Jan V, Petr C. Coating nanodiamonds with biocompatible shells for applications in biology and medicine[J].Current Opinion in Solid State and Materials Science,2017,21(1):43.
37 Dae G L, Racelly E P, Ki H K, et al Combinatorial nanodiamond in pharmaceutical and biomedical applications[J].International Journal of Pharmaceutics,2016,514(1):41.
38 Zhang Y, Zang J B, Tian P F, et al. Microwave method coated nanodiamond and its application progress in catalytic area[J].Diamond & Abrasives Engineering,2016,36(5):8(in Chinese).
张艳,藏建兵,田鹏飞,等.微波法涂覆纳米金刚石在催化领域应用进展[J].金刚石与磨料磨具工程,2016,36(5):8.
[1] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[2] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[3] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[4] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[5] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[6] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[7] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[8] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[9] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[10] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[11] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[12] 刘蕊蕊, 冀志江, 谭建杰, 王静, 张琎珺, 廖祥. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*[J]. CLDB, 2017, 31(9): 152-157.
[13] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[14] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[15] 杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed