Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 443-452    https://doi.org/10.11896/j.issn.1005-023X.2018.03.015
     材料综述 |
高导热金刚石/铜复合材料界面修饰研究进展
张晓宇1,2,许旻1,曹生珠1,2
1 兰州空间技术物理研究所,兰州 730000
2 真空技术与物理国防科技重点实验室,兰州 730000
Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity
Xiaoyu ZHANG1,2,Min XU1,Shengzhu CAO1,2
1 Lanzhou Institute of Physics, Lanzhou 730000
2 Science and Technology on Vacuum Technology andPhysics Laboratory, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2362KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

界面结合良好的金刚石/铜复合材料具有优异的热物理性能。通过各种手段修饰金刚石-铜界面能够充分发挥金刚石/铜复合材料的高导热潜力。综述了制备金刚石/铜复合材料时主要的两类界面修饰方法:金刚石表面预镀碳化物形成元素和对铜基体预合金化,并对这两类修饰手段的制备工艺和导热机制进行了简单评述。探讨了金刚石/铜复合材料制备及界面修饰领域目前存在的问题及发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓宇
许旻
曹生珠
关键词:  金刚石/铜复合材料  界面修饰  热导率  金属基复合材料    
Abstract: 

Diamond/copper composites with well-bonded interface have excellent thermophysical properties. Modified by various means, the diamond-copper interface can sufficiently enhance the thermal conductivity of diamond/copper composites. In this paper, recent progress about two main kinds of interfacial modification methods to prepare diamond/copper composite was reviewed, respectively as the preplating of carbide forming elements on diamond surface and pre-alloying of copper substrate. Preparation process and thermal conduction mechanism of these two modification methods were introduced briefly. The existing problems and development trend of diamond/copper composite preparation and interface modification were discussed.

Key words:  diamond/copper composites    interface modification    thermal conductivity    metal matrix composites
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB333  
作者简介:  张晓宇:男,1988年生,博士研究生,主要从事高导热复合材料的研究 E-mail: zhangxiaoyu31@163.com|许旻:通信作者,男,1971年生,研究员,主要从事航天热控材料的研究 E-mail: xmsurface@126.com
引用本文:    
张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity. Materials Reports, 2018, 32(3): 443-452.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.015  或          http://www.mater-rep.com/CN/Y2018/V32/I3/443
  
  
  
  
  
1 Yoshida K, Morigami H . Thermal properties of dia mond/copper composite material[J]. Microelectronics Reliability, 2004,44(2):303.
2 Yan G, Wei B R, Yang Haitao , et al. Research progress in thermal conductivity models of polymer based composite[J].Fiber Reinforced Plastics/Composites,2006(3):50(in Chinese).
2 闫刚, 魏伯荣, 杨海涛 , 等. 聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006(3):50.
3 Wang X T, Zhang Y, Che Z F , et al. Review on the progress of diamond particles dispersed metal matrix composites with superior high thermal conductivity[J].Journal of Functional Materials,2014(7):7001(in Chinese).
3 王西涛, 张洋, 车子璠 , 等. 金刚石颗粒增强金属基高导热复合材料的研究进展[J].功能材料,2014(7):7001.
4 Hasselman D P H, Johnson L F . Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987,21(6):508.
5 Tavangar R, Molina J M, Weber L . Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast[J]. Scripta Materialia, 2007,56(5):357.
6 Kems J A, Colella N J, Makowiecki D, et al. Dymalloy: A compo-site substrate for high power density electronic components [C]∥Proceeding of the 1995 international symposium on microelectronics.Los Angeles,US, 1995.
7 Bai H, Ma N G, Lang J , et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites[J]. Journal of Alloys and Compounds, 2013,580:382.
8 Hu H B, Kong J . Improved thermal performance of diamond-copper composites with boron carbide coating[J]. Journal of Materials Engineering and Performance, 2014,23(2):651.
9 Hell J, Chirtoc M, Eisenmenger S C , et al. Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system[J]. Surface & Coatings Technology, 2012,208:24.
10 Xia Y, Song Y Q, Lin C G , et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J]. Transactions of Nonferrous Metals Society of China, 2009,19(5):1161.
11 Deng L F, Zhu X K, Tao J M , et al. Application of active element to Cu/diamond composites[J]. Electronics Process Technology, 2009,30(3):128(in Chinese).
11 邓丽芳, 朱心昆, 陶静梅 , 等. 活性元素在铜/金刚石复合材料中的应用[J]. 电子工艺技术, 2009,30(3):128.
12 Zain-Ul-Abdein M, Raza K, Khalid F A , et al. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites[J]. Materials and Design, 2015,86:248.
13 Wang P P, Guo H, Zhang X M , et al. Interfacial reaction of diamond/Copper composites[J]. Chinese Journal of Rare Metals, 2015,39(4):308(in Chinese).
13 王鹏鹏, 郭宏, 张习敏 , 等. 金刚石/铜复合材料的界面反应研究[J]. 稀有金属, 2015,39(4):308.
14 Chu K, Liu Z F, Jia C C , et al. Thermal conductivity of SPS conso-lidated Cu/diamond composites with Cr-coated diamond particles[J]. Journal of Alloys and Compounds, 2010,490(1):453.
15 Kang Q P, He X B, Ren S B , et al. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J]. Applied Thermal Engineering, 2013,60(1):423.
16 Ren S B, Shen X Y, Guo C Y , et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Composites Science and Techno-logy, 2011,71(13):1550.
17 Lin J M . Research on fabrication and properties of diamond/copper composites[D]. Nanjing:Southeast University, 2014(in Chinese).
17 林金梅 . 金刚石/铜复合材料的制备及性能研究[D]. 南京:东南大学, 2014.
18 Mortimer D A, Nicholas M . The wetting of carbon and carbides by copper alloys[J]. Journal of Materials Science, 1973,8(5):640.
19 Dong Y H, He X B, Rafi U D , et al. Fabrication and thermal conductivity of near-net-shaped diamond/copper composites by pressureless infil-tration[J]. Journal of Materials Science, 2011,46(11):3862.
20 Dong Y H, Zhang R Q, He X B , et al. Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration[J]. Materials Science and Engineering B, 2012,177(17):1524.
21 Xu X L . Diamond surface modification and preparation and perfor-mance of its composites[D]. Changsha:Hunan University, 2012(in Chinese).
21 徐兴龙 . 金刚石表面改性及其复合材料制备工艺与性能[D]. 长沙:湖南大学, 2012.
22 Wang Q . Study on diamond/copper composites fabricated by surface metallization-chemical co-deposition method in electronic packaging application[D]. Tianjin:Tianjin University, 2008(in Chinese).
22 王强 . 表面金属化-共沉积法制备金刚石/铜基封装材料的研究[D]. 天津:天津大学, 2008.
23 Zhang Y, Zhang H L, Wu J H , et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia. 2011,65(12):1097.
24 Wei C L, Xu L, Zhang L B , et al. Research on the density of Cr coating diamond/copper composite material under microwave heating[J]. Mining & Metallurgy, 2016,25(1):31(in Chinese).
24 卫陈龙, 许磊, 张利波 , 等. 微波烧结镀铬金刚石/铜复合材料的致密度研究[J]. 矿冶, 2016,25(1):31.
25 Abyzov A M, Kidalov S V, Shakhov F M . High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix[J]. Journal of Materials Science, 2011,46(5):1424.
26 Abyzov A M, Kidalov S V, Shakhov F M . Filler-matrix thermal boundary resistance of diamond copper composite with high thermal conductivity[J]. Physics of the Solid State, 2012,54(1):210.
27 Abyzov A M, Kidalov S V, Averkin A I , et al. Mechanical properties of a diamond-copper composite with high thermal conductivity[J]. Materials and Design, 2015,87:527.
28 Bai H, Ma N G, Lang J , et al. Thermal conductivity of Cu/diamond compo-sites prepared by a new pretreatment of diamond powder[J]. Composites:Part B, 2013,52:182.
29 Zhang C, Wang R, Cai Z , et al. Low-temperature densification of dia-mond/Cu composite prepared from dual-layer coated diamond particles[J]. Journal of Materials Science:Materials in Electronics, 2015,26(1):185.
30 Li J W, Zhang H L, Zhang S M , et al. On the thermal conductivity of Cu/diamond composite of diamond particles with tungsten coating[J]. Journal of Functional Materials, 2016,47(1):1034(in Chinese).
30 李建伟, 张海龙, 张少明 , 等. 金刚石表面镀钨对铜/金刚石复合材料热导率的影响[J]. 功能材料, 2016,47(1):1034.
31 Kang Q P, He X B, Ren S B , et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond compo-sites[J]. Journal of Alloys and Compounds, 2013,576:380.
32 Kang Q P, He X B, Ren S B , et al. Preparation of high thermal conductivity copper-diamond composites using molybdenum carbide-coated diamond particles[J]. Journal of Materials Science, 2013,48(18):6133.
33 Shen X Y, He X B, Ren S B , et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. Journal of Alloys and Compounds, 2012,529:134.
34 Schubert T, Trindade B, Wei?g?rber T , et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Materials Science and Engineering A, 2008,475:39.
35 Schubert T, Ciupiński ?, Zielinński W , et al. Interfacial characte-rization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scripta Materialia, 2008,58:263.
36 Weber L, Tavangar R . On the influence of active element content on the thermal conducti-vity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scripta Materialia, 2007,57(11):988.
37 Ciupiński ?, Kruszewski M J, Grzonka J , et al. Design of interfacial Cr3C2, carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications[J]. Materials & Design, 2017,120:170.
38 Mańkowski P, Dominiak A, Domański R , et al. Thermal conducti-vity enhancement of copper-diamond composites by sintering with chromium additive[J]. Journal of Thermal Analysis and Calorimetry, 2014,116(2):881.
39 Grzonka J, Kruszewski M J, Rosiński M , et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Characterization, 2015,99:188.
40 Guo H, Wang G Z, Zhang X M , et al. Low-temperature heat conduction characteristics of diamond/Cu composite by pressure infiltration method[J]. Rare Metals, 2013,32(6):579.
41 Guo H, Wang G Z, Jia C C , et al. Low-temperature heat conduction characteristics of diamond/Cu composite by high pressure infiltration[J]. Acta Materiae Compositae Sinica, 2014,31(3):550(in Chinese).
41 郭宏, 王光宗, 贾成厂 , 等. 高压熔渗金刚石/铜复合材料的低温导热特性[J]. 复合材料学报, 2014,31(3):550.
42 Fan Y M, Guo H, Xu J , et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration[J]. International Journal of Minerals,Metallurgy and Materials, 2011,18(4):472.
43 Fan Y M, Guo H, Xu J , et al. Pressure infiltrated Cu/diamond composites for LED applications[J]. Rare Metals, 2011,30(2):206.
44 Chu K, Jia C C, Guo H , et al. On the thermal conductivity of Cu-Zr/diamond composites[J]. Materials and Design, 2013,45:36.
45 He J S, Wang X T, Zhang Y , et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method[J]. Composites:Part B, 2015,68:22.
46 Shen W P, Shao W J, Wang Q Y , et al. Thermal conductivity and thermal expansion coefficient of diamond/5 wt%Si-Cu composite by vacuum hot pressing[J]. Fusion Engineering and Design, 2010,85(10):2237.
47 Chen H, Jia C C, Li S J , et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J]. International Journal of Minerals,Metallurgy and Materials, 2012,19(4):364.
48 Ali N, Ahmed W, Rego C A , et al. Chromium interlayers as a tool for enhancing diamond adhesion on copper[J]. Diamond & Related Materials, 2000,9(8):1464.
49 Zhang X M, Guo H, Yin F Z , et al. Influences of Cr element on interface structures and thermal properties of Diamond/Cu compo-sites[J]. Chinese Journal of Rare Metals, 2010,34(2):221(in Chinese).
49 张习敏, 郭宏, 尹法章 , 等. Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响[J]. 稀有金属, 2010,34(2):221.
50 Zhang X M, Guo H, Yin F Z , et al. Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications[J]. Rare Metals, 2011,30(1):94.
[1] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[2] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[3] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[4] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[5] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[6] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[7] 田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
[8] 杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
[9] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[10] 周谟金, 蒋业华, 温放放, 种晓宇. 热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 117-121.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed