Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3465-3472    https://doi.org/10.11896/j.issn.1005-023X.2018.19.021
  高分子与聚合物基复合材料 |
生物宽带反射结构色效应研究综述
王丹彤,周涵,范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Broadband Reflection in Nature: a Review on Structural Coloration Effects
WANG Dantong, ZHOU Han, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来结构色在材料学、生物学和物理学等研究领域引起了广泛关注。结构色是指由材料表面微观结构与入射光相互作用而引起的反射、散射、干涉等光学现象产生的颜色。自然界中的生物历经数百万年的进化与选择产生了多种多样的结构色,例如昆虫外壳和鸟类羽毛上展现的绚丽夺目的彩虹色等。以生物结构色为研究对象,科研人员提出了多种不同的结构色产生机理。
深入研究生物结构色的产生机理,是人类有效利用结构色的基础。相对于绚丽夺目的彩色,自然界中的白色常常容易被人们忽略。因此,关于自然界中白结构色产生机理的研究相对较少。白结构色要求生物表面微观结构对入射光能够产生宽带反射。宽带反射是指材料微观结构对入射光产生的对波长没有明显选择性的反射,其反射光谱曲线通常为台阶状。能够产生宽带反射的生物其表面微观结构更加精细复杂。近年来,生物白结构色逐渐引起了人们的关注,人们对宽带反射结构色的产生机理有了越来越深刻的认识。
自然界中广泛地存在宽带反射结构色,例如蝴蝶、甲虫、海洋生物等表面上的白结构色。不同生物宽带反射结构色的产生机理可能各不相同。某些鱼类表皮上的白结构色是由入射光在其表皮的层与层结构之间发生相长干涉而产生的;甲虫表皮和蝴蝶翅膀中的白结构色则是由于其表面无序微观结构对入射光的多重散射而引起的;巨蛤的白结构色是由其表皮上微观结构形成的彩色色块的颜色混合效应产生的;撒哈拉沙漠中银白蚂蚁的白结构色则是由其表皮毛发的微观结构引起的入射光全内反射产生的。因此,对宽带反射结构色产生的不同机理进行归纳总结,可以为不同领域有效利用白结构色提供合理的实现方法。
本文从布拉格反射器、无序结构、颜色混合效应及特殊结构等四个方面来阐述自然界中宽带反射结构色产生的原因,归纳了海洋动物、植物、甲虫、蝴蝶等生物利用宽带反射产生白结构色的机理。深入了解宽带反射产生白结构色的机理,可为人工仿生制备光调节功能材料提供新思路,且有助于探索宽带反射结构在降温涂层、发光器件、显示屏幕等诸多领域的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丹彤
周涵
范同祥
关键词:  宽带反射  白色结构色  人工光调节功能材料    
Abstract: Structural color, which is generated along with particular optical phenomena such as reflection, scattering, interfe-rence of light caused by the specific surface microstructures of materials, has aroused wide attention in the fields of materials science, biology and physics in recent years. Nature’s millions of years of evolution has produced a rich variety of creatures owning structural colors, such as colorful insects and birds. Based on the studies of biological structural colors, several different mechanisms of the structural coloration in nature have been proposed.
The complete insights on essence of biological structural coloration are the prerequisite of the practical applications of structural colors. In contrast to the other brilliant colors, white is often ignored, and scant studies have been conducted to investigate the optics of white structural coloration. Structural whiteness relies heavily on sophisticated surface microstructure which can result in broadband reflection of light, i.e. the wavelength-independent reflection of incident light with a step-like reflectance spectrum. In the past few years, biological white structural coloration has captured gradually increased research interest, and our perceptions of how the broadband reflection happens have become more and more profound.
Structural whiteness are common in nature, such as white color on the surface of butterflies, beetles and marine organisms. Generating mechanisms of natural structural whiteness by light broadband reflection are different. The structural whiteness on skin of some fishes may be resulted from constructive interference of layer-by-layer microstructure. Whiteness on beetle cuticles and butterfly wing scales can be ascribed to the multiple scattering of incident light on their surface disordered microstructures. White structural coloration of giant clams is the outgrowth of color mixing effect of the colorful plots on its epidermis microstructure. And white structural coloration of the Saharan silver ants is caused by the light total internal reflection by its hair. Therefore, summarizing the optical principles of light broadband reflection is of particular significance to the practical utilization of white structural coloration.
This review aims to elucidate the principles and fundamentals of natural structural whiteness from the perspectives of Bragg reflector, disordered structure, color mixing effect and special structures found in natural creatures such as marine animals, plants, beetles, butterflies, etc. The studies on understanding of natural broadband reflection principle are crucial to the manufacture of artificial optical regulatory functional materials, which will in consequence promote the development and innovation in the fields of accurate optical instruments, display screens, light-emitting devices, cooling coatings, etc.
Key words:  broadband reflection    structural whiteness    artificial optical regulatory functional materials
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TB17  
  TB133  
基金资助: 全国优博作者专项基金(201434);上海市自然科学基金(17ZR1441100);上海市青年科技启明星计划资助(15QA1402700);中央高校基本科研业务费专项资金资助
作者简介:  王丹彤:女,1993年生,硕士生,研究方向为仿生光学材料 E-mail:wdtong@sjtu.edu.cn; 范同祥:通信作者,男,1971年生,博士,教授,研究方向为特种功能金属基复合材料和仿生材料 E-mail:txfan@sjtu.edu.cn;
引用本文:    
王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
WANG Dantong, ZHOU Han, FAN Tongxiang. Broadband Reflection in Nature: a Review on Structural Coloration Effects. Materials Reports, 2018, 32(19): 3465-3472.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.021  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3465
1 Sweeney A, Jiggins C, Johnsen S. Insect communication: Polarized light as a butterfly mating signal[J].Nature,2003,423(6935):31.
2 Hooke R. Micrographia[M].New York: Cosimo Classics,2007.
3 Anderson T F, Jr A G R. An electron microscope study of some structural colors of insects[J].Journal of Applied Physics,1942,13(12):748.
4 Tadepalli S, Slocik J M, Gupta M K, et al. Bio-optics and bio-inspired optical materials[J].Chemical Reviews,2017,117(20):12705.
5 Stavenga D G. Thin film and multilayer optics cause structural colors of many insects and birds[J].Materials Today Proceedings,2014,1:109.
6 Parker A R. A vision for natural photonics[J].Philosophical Tran-sactions Mathematical Physical & Engineering Sciences,2004,362(1825):2709.
7 Kinoshita S, Yoshioka S. Structural colors in nature: The role of regularity and irregularity in the structure[J].ChemPhysChem,2005,6(8):1442.
8 Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors[J].Reports on Progress in Physics,2008,71(7):175.
9 Parker A R, Martini N. Structural color in animals-simple to complex optics[J].Optics and Laser Technology,2006,38:315.
10 Zhao S, Brady P C, Gao M, et al. Broadband and polarization reflectors in the lookdown, Selene Vomer[J].Journal of the Royal Society Interface,2015,12(104):20141390.
11 Zhao Q, Fan T, Jian D, et al. Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing[J].Carbon,2011,49(3):877.
12 Zhao Q, Guo X, Fan T, et al. Art of blackness in butterfly wings as natural solar collector[J].Soft Matter,2011,7(24):11433.
13 Bell G R, M thger L M, Gao M, et al. Diffuse white structural coloration from multilayer reflectors in a squid[J].Advanced Mate-rials,2014,26(25):4352.
14 Stavenga D G, Wilts B D, Leertouwer H L, et al. Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima[J].Philosophical Transactions of the Royal Society of London,2011,366(1565):709.
15 Jordan T M, Partridge J C, Roberts N W. Non-polarizing broadband multilayer reflectors in fish[J].Nature Photonics,2012,6(11):759.
16 Fink Y, Winn J N, Fan S, et al. A dielectric omnidirectional reflector[J].Science,1998,282(5394):1679.
17 Hart S D, Maskaly G R, et al. External reflection from omnidirectional dielectric mirror fibers[J].Science,2002,296:510.
18 Yang S H, Cooper M L, Bandaru P R, et al. Giant birefringence in multi-slotted silicon nanophotonic waveguides[J].Optics Express,2008,16:8306.
19 Gessmann T, Schubert E F, Graff J W, et al. Omnidirectional reflective contacts for light-emitting diodes[J].IEEE Electron Device Letters,2003,24:683.
20 Rosenthal E I, Holt A L, Sweeney A M. Three-dimensional midwater camouflage from a novel two-component photonic structure in hatchetfish skin[J].Journal of the Royal Society Interface,2017,14(130):20161034.
21 Gur D, Leshem B, Oron D, et al. The structural basis for enhanced silver reflectance in koi fish scale and skin[J].Journal of the American Chemical Society,2014,136(49):17236.
22 Wiersma D S. Disordered photonics[J].Nature Photonics,2013,7(3):188.
23 Vukusic P, Hallam B, Noyes J. Brilliant whiteness in ultrathin beetle scales[J].Science,2007,315(5810):348.
24 Burresi M, Cortese L, Pattelli L, et al. ERRATUM: Bright-white beetle scales optimise multiple scattering of light.[J].Scientific Reports,2014,4:6075.
25 Cortese L, Pattelli L, et al. Anisotropic light transport in white beetle scales[J].Advanced Optical Materials,2015,3(10):1337.
26 Wilts B D, Sheng X, Holler M, et al. Evolutionary-optimized photonic network structure in white beetle wing scales[J].Advanced Materials,2017:1702057.
27 Vigneron J P, Rassart M, Vértesy Z, et al. Optical structure and function of the white filamentary hair covering the edelweiss bracts[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2005,71:011906.
28 Ye C, Li M, Hu J, et al. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective “cool roof”[J].Energy & Environmental Science,2011,4(9):3364.
29 Hoenders B J, Stavenga D G, Giraldo M A. Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies[J].Optics Express,2006,14(11):4880.
30 Vukusic P, Stavenga D. Physical methods for investigating structural colours in biological systems[J].Journal of the Royal Society Interface,2009,6(Suppl 2):S133.
31 Stavenga D, Stowe S, et al. Butterfly wing colours: Scale beads make white pierid wings brighter[J].Proceedings of the Royal Society of London. Series B: Biological Sciences,2004,271(1548):1577.
32 Luke S M, Vukusic P, Hallam B. Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales[J].Optics Express,2009,17(17):14729.
33 Allen J J, M thger L M, Barbosa A, et al. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage[J].Journal of Comparative Physiology A Neuroethology Sensory Neural & Behavioral Physiology,2009,195(6):547.
34 Mthger L M, Senft S L, Gao M, et al. Bright white scattering from protein spheres in color changing, flexible cuttlefish skin[J].Advanced Functional Materials,2013,23(32):3980.
35 Stavenga D G, Matsushita A, et al. Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors[J].Journal of Experimental Biology,2012,215:657.
36 Vukusic P, et al. Structural colour: Colour mixing in wing scales of a butterfly[J].Nature,2000,404(6777):457.
37 Vukusic P, et al. A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves[J].Journal of the Royal Society Interface,2009,6 (Suppl 2):S193.
38 Ge D, Wu G, Yang L, et al. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(28):7379.
39 Ghoshal A, Eck E, Morse D E. Biological analogs of RGB pixelation yield white coloration in giant clams[J].Optica,2016,3(1):108.
40 Ghoshal A, Eck E, Gordon M, et al. Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams[J].Journal of the Royal Society Interface,2016,13(120):20160285.
41 Shi N N, Tsai C C, Camino F, et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants[J].Science,2015,349(6245):298.
42 Chen H T, Taylor A J, Yu N. A review of metasurfaces: Physics and applications[J].Reports on Progress in Physics Physical Society,2016,79(7):076401.
43 Zhu L, Raman A P, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(40):12282.
44 Chen Z, Zhu L, Raman A, et al. Radiative cooling to deep sub-free-zing temperatures through a 24-h day-night cycle[J].Nature Communications,2016,7:13729.
45 Li W, Shi Y, Chen K, et al. A comprehensive photonic approach for solar cell cooling[J].Acs Photonics,2017,4(4):774.
[1] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed