Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 101-104    https://doi.org/10.11896/j.issn.1005-023X.2017.024.020
  材料研究 |
仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究
吉海燕1,范亚敏1,吴殿国1,费 婷1,黄济华1,许 晖2,李华明2
1 江苏大学材料科学与工程学院,镇江 212013;
2 江苏大学能源研究院,镇江 212013
Preparation and Properties of Biomimetic Superhydrophobic Polypropylene/Titanium Dioxide Films
JI Haiyan1, FAN Yamin1, WU Dianguo1, FEI Ting1, HUANG Jihua1, XU Hui2, LI Huaming2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013;
2 Institute for Energy Research, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简便的相分离法制备出超疏水PP/TiO2复合薄膜。该复合薄膜表面与水的接触角为169°,滚动角小于4°。pH 值为1~14 的水溶液在其表面都具有很高的接触角,均大于160°。对其表面进行扫描电子显微镜分析可知,该薄膜具有类花瓣二元微纳米复合微观结构,这种结构可捕获空气,形成水与基底之间的气垫,对表面超疏水性的产生起到了关键作用。用Cassie理论对其表面超疏水进行分析,结果表明,约2.7%的面积是水滴和基体接触,而有约97.3%的面积是水滴和空气接触。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉海燕
范亚敏
吴殿国
费 婷
黄济华
许 晖
李华明
关键词:  超疏水  聚丙烯  二氧化钛  接触角    
Abstract: A facile method of phase separation was developed for fabricating the superhydrophobic polypropylene/titanium dioxide film. The prepared film showed superhydrophobicity with a high contact angle (169°) and low sliding angle (less than 4°). Moreover,the surface showed high contact angle (larger than 160°) for all the solution with pH value ranging from 1 to 14. Scanning electron microscopy images presented a kind of flower-like and micro/nano binary structure on the obtained polypropylene/titanium surface, which could trap air and form air cushion between water and the surface. Thus this micro/nano hierarchical structure played an important role in the formation of the superhydrophobicity. The superhydrophobic phenomenon of the prepared surface was analyzed according to Cassie theory, and it was proposed that only about 2.7% of the water contact surface was contacted with the substrate and the rest 97.3% was contacted with the air cushion.
Key words:  superhydrophobic    polypropylene    titanium dioxide    contact angle
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TB17  
基金资助: 国家自然科学基金(21507046);江苏省自然科学基金(BK20130513);江苏大学大学生科研立项资助项目(14A336;14A302)
作者简介:  吉海燕:女,1979年生,博士,副教授,主要从事超疏水材料的制备及性能研究 E-mail: hyji1013@ujs.edu.cn
引用本文:    
吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
JI Haiyan, FAN Yamin, WU Dianguo, FEI Ting, HUANG Jihua, XU Hui, LI Huaming. Preparation and Properties of Biomimetic Superhydrophobic Polypropylene/Titanium Dioxide Films. Materials Reports, 2017, 31(24): 101-104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.020  或          http://www.mater-rep.com/CN/Y2017/V31/I24/101
1 Feng X J, Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Adv Mater, 2006,18:3063.
2 Shirtcliffe N J, McHale G, Perry C C, et al. Dual-scale roughness produces unusually water-repellent surfaces[J]. Adv Mater, 2004,16:1929.
3 Zhang S N, Huang J Y, Tang Y X, et al. Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures[J]. Small, 2017,13:1.
4 Peng C Q, Xing S L, Yuan Z Q, et al. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Appl Surf Sci, 2012,259:764.
5 Chapman J, Regan F. Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor application advancing deployment with answers from nature[J].Adv Eng Mater, 2012,14:175.
6 She Z X, Qing L, Wang Z W, et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J].Chem Eng J, 2013,228:415.
7 Vinogradova O I, Dubov A L. Superhydrophobic textures for microfluidics[J]. Mendeleev Commun, 2012,22:229.
8 Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a super hydrophobic surface[J]. Science, 2003,299:1377.
9 Feng L, Li S, Li Y, et al. Superhydrophobic surfaces: From natural to artificial[J]. Adv Mater, 2002,14:1857.
10Shirtcliffe N J, McHale G, Perry C C. Intrinsically superhydrophobic organosilica sol-gel foams[J]. Langmuir, 2003, 19:5626.
11Zhang X, Shi F, Yu X, et al. Polyelectrolyte multilayer as matrix froelectrochemical deposition of gold clusters: toward superhydrophobic surface[J]. J Am Chem Soc, 2004,126:3064.
12Zhao N, Xie Q D, Weng L H, et al. Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J]. Macromolecules,2005,38:8996.
13Cassie A B D, Baxter S. Effects of surface roughness onwettability of solid surfaces[J]. Trans Faraday Soc, 1944,40:546.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[3] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[4] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[5] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[6] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[7] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[8] 黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
[9] 刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
[10] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[11] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[12] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[13] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[14] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[15] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed