Stabilization of Zinc Metal Anodes with Polyacrylamide as an Electrolyte Additive
LI Xueyan1,*, ZHANG Mengxi1, PEI Wenle2, LI Shasha1, LI Peng1
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Engineering Research Center of Heavy Machinery of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract: Aqueous zinc-ion batteries are considered as a promising energy storage system due to their low cost and high safety. The zinc metal can be directly used as the anode of aqueous zinc ion batteries because of its high theoretical volume-specific capacity and low redox potential. However, the zinc metal anode has problems such as self-corrosion and zinc dendrite growth, which seriously shorten the battery cycle life and restricts its practical application. In this work, a polymer polyacrylamide (PAM) was designed as an electrolyte additive for zinc ion batteries, and it was found that the batteries showed the optimal cycling performance in the electrolyte system with 2 g/L PAM, and the zinc symmetric batteries remains steady after 2 800 h at 5 mA/cm2 and 1 mAh/cm2. Further electrochemical tests and SEM characterization demonstrated that the PAM additive was able to inhibit metallic zinc dendrites and mitigate zinc electrode corrosion. This work provides a new idea for designing high-performance of aqueous electrolyte additives through functional electrolyte additives.
通讯作者:
* 李雪艳,太原科技大学化学工程与技术学院讲师、硕士研究生导师。2014年山西大同大学化学专业本科毕业,2021年北京航空航天大学材料物理与化学专业博士毕业后到太原科技大学工作至今,目前主要从事能源存储和转化材料等方面的研究工作。在国际期刊发表论文10余篇,包括Nano Energy、Journal of Colloid and Interface Science、ACS Applied Materials & Interfaces等。xyli@tyust.edu.cn
引用本文:
李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
LI Xueyan, ZHANG Mengxi, PEI Wenle, LI Shasha, LI Peng. Stabilization of Zinc Metal Anodes with Polyacrylamide as an Electrolyte Additive. Materials Reports, 2024, 38(15): 24020018-5.
1 Wang L Q, Feng J, Tong Y, et al. International Journal of Hydrogen Energy, 2019, 44(1), 128. 2 Lan B, Zhang W, Luo P, et al. Materials Reports, 2020, 34 (7), 13068(in Chinese). 蓝彬栩, 张文卫, 罗平, 等. 材料导报, 2020, 34 (7), 13068. 3 Yi Z, Yan L, Zhang T, et al. Composites Part A:Applied Science and Manufacturing, 2020, 136, 105968. 4 Wang L, Tong Y, Feng J, et al. Sustainable Materials and Technologies, 2019, 19, e00089. 5 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7(1), 19. 6 Wand L, Zhou Z, Yan X, et al. Energy Storage Materials, 2018, 14, 22. 7 Wang K, Jiang K, Chung B, et al. Nature, 2014, 514(7522), 348. 8 Fu A, Wang C, Pei F, et al. Small, 2019, 15(10), 1804786. 9 Tarascon J M, Armand M. Nature, 2001, 414, 359. 10 Petnikota S, Srikanth V V S S, Nithyadharseni P, et al. ACS Sustainable Chemistry & Engineering, 2015, 3(12), 3205. 11 Zhao X, Liang X, Li Y, et al. Energy Storage Materials, 2021, 42, 533. 12 He P, Chen Q, Yan M, et al. EnergyChem, 2019, 1(3) (2019) 100022. 13 Jia H, Wang Z, Tawiah B, et al. Nano Energy, 2020, 70, 104523. 14 Ruan P, Liang S, Lu B, et al. Angewandte Chemie International Edition, 2022, 61(17), e202200598. 15 Zhang Q, Luan J, Tang Y, et al. Angewandte Chemie International Edition, 2020, 59(32), 13180. 16 Yan H, Zhang X, Yang Z, et al. Coordination Chemistry Reviews, 2022, 452, 214297. 17 Guo S, Qin L, Zhang T, et al. Energy Storage Materials, 2021, 34, 545. 18 Blanc L E, Kundu D, Nazar L F. Joule, 2020, 4(4), 771. 19 Gu X, Du Y, Ren X, et al. Advanced Functional Materials, 2024, 34(25), 2316541. 20 Yan M, Dong N, Zhao X, et al. ACS Energy Letter, 2021, 6(9) 3236. 21 Qiao S, Zhou J, Zhao D, et al. Journal of Colloid and Interface, 2024, 653, 1085. 22 Miller B G, Traut T W, Wolfenden. Journal of the American Chemical Society, 1998, 120, 2666. 23 Youssef K M, Koch C C, Fedkiw P S. Electrochimica Acta, 2008, 54, 677.