Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21060195-6    https://doi.org/10.11896/cldb.21060195
  高分子与聚合物基复合材料 |
离子型聚丙烯酰胺原位修饰聚氨酯泡沫用于高效乳液分离
范雷倚1,2, 王锐2, 何睿杰2, 张瑞阳2, 张骞2, 周莹1,2
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院,成都 610500
In-situ Modification of Polyurethane Foams by Ionic Polyacrylamide for Highly-efficient Emulsion Separation
FAN Leiyi1,2, WANG Rui2, HE Ruijie2, ZHANG Ruiyang2, ZHANG Qian2, ZHOU Ying1,2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 5935KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含有表面活性剂乳液的分离是污染物处理领域面临的难题之一。本研究通过原位发泡改性的方式,成功制备了不同离子型聚丙烯酰胺修饰的聚氨酯(PAM@PU)泡沫。聚丙烯酰胺(PAM)的引入提高了聚氨酯(PU)泡沫的疏水性能,其水接触角(WCA)可达(143±3)°,并且具备优异的耐酸、碱、盐和物理磨损等稳定性。阳离子型和阴离子型PAM的引入使聚氨酯泡沫的压缩应力由7.6 kPa(纯PU)分别增大至25.5 kPa和21.6 kPa,提高了PU的力学性能,有利于其实际应用。值得一提的是,PAM@PU对不同表面活性剂稳定的乳液表现出优异的分离效率:其中,阴离子型聚丙烯酰胺复合聚氨酯泡沫(APAM@PU)对阳离子表面活性剂稳定乳液的分离效率高达92.27%,相比PU提升了22.17%;阳离子型聚丙烯酰胺复合聚氨酯泡沫(CPAM@PU)对阴离子表面活性剂稳定乳液的分离效率为84.15%,相比PU提升了10.92%。本工作为高效破乳材料的设计开发提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范雷倚
王锐
何睿杰
张瑞阳
张骞
周莹
关键词:  聚氨酯泡沫  离子型聚丙烯酰胺  复合材料  乳液分离    
Abstract: The separation of emulsions containing surfactants is one of the most challenging difficulties in the field of pollutant treatment. In this study, various ionic polyacrylamide modified polyurethane (PAM@PU) foams were successfully prepared by in-situ foaming modification. The use of polyacrylamide (PAM) increases the hydrophobicity of polyurethane (PU) foam, which allows it a water contact angle (WCA) of (143±3)° and also provides good acid, alkali, salt, and physical wear resistance. With the addition of cationic and anionic PAM, the compressive stress of PU foam rises from 7.6 kPa (pure PU) to 25.5 kPa and 21.6 kPa, respectively, which enhances the mechanical characteristics of PU and is helpful to its practical application. It's worth noting that PAM@PU has a high separation efficiency for emulsions stabilized with various surfactants. For cationic surfactant stabilized emulsions, anionic polyacrylamide composite polyurethane foam (APAM@PU) has a separation efficiency of 92.27%, 22.17% higher than PU, while cationic polyacrylamide composite polyurethane foam (CPAM@PU) has a separation efficiency of 84.15% for anionic surfactant stabilized emulsions, 10.92% higher than PU. This research offers a fresh perspective on the design and development of effective demulsifying materials.
Key words:  polyurethane foam    ionic polyacrylamide    composite materials    emulsion separation
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O648  
基金资助: 四川省重大科技专项(2020ZDZX0008);西南石油大学“启航计划”项目(2021QHZ015)
通讯作者:  yzhou@swpu.edu.cn   
作者简介:  范雷倚,2018年7月于西南石油大学获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在周莹教授的指导下进行研究。目前主要研究领域为乳液分离。
周莹,西南石油大学新能源与材料学院教授、博士研究生导师。2004年在中南大学获得无机非金属材料学士学位,2007年于中国科学院上海光学精密机械研究所获得材料学硕士学位,2010年在瑞士苏黎世大学(UZH)获得材料化学博士学位。长期从事油气资源清洁利用与污染治理材料研究。在科学通报、中国科学化学、Nat. Commun.、Angew. Chem. Int. Ed.、ACS Catal. 等期刊发表论文130余篇,被正面引用6 000多次,H index为45,其中15篇论文入选ESI高被引论文。授权中国发明专利15项、美国发明专利1项。获得中国石油和化学工业联合会青年科技突出贡献奖、侯德榜化工科学技术青年奖等。
引用本文:    
范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 离子型聚丙烯酰胺原位修饰聚氨酯泡沫用于高效乳液分离[J]. 材料导报, 2022, 36(19): 21060195-6.
FAN Leiyi, WANG Rui, HE Ruijie, ZHANG Ruiyang, ZHANG Qian, ZHOU Ying. In-situ Modification of Polyurethane Foams by Ionic Polyacrylamide for Highly-efficient Emulsion Separation. Materials Reports, 2022, 36(19): 21060195-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060195  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21060195
1 Wen H. Nonlinear seepage mechanism and dynamic evaluation model of large channels in ultra-high water-cut oil reservoirs. Ph.D. Thesis,Northeast Petroleum University, China, 2017 (in Chinese).
文华. 特高含水期油藏大孔道非线性渗流机理与动态评价模型.博士学位论文, 东北石油大学, 2017.
2 Bin S X. Research on development characteristics of water flooding based on oil-water two-phase seepage in ultra-high water cut period. Ph.D. Thesis,Southwest Petroleum University, China, 2013 (in Chinese).
邴绍献. 基于特高含水期油水两相渗流的水驱开发特征研究. 博士学位论文, 西南石油大学, 2013.
3 Zhang Z. Research on fine description of thin interbedded oil reservoirs in high water cut period. Ph.D. Thesis,Northwest University, China, 2019 (in Chinese).
张章. 高含水期薄互层状油藏储层精细刻画研究.博士学位论文, 西北大学, 2019.
4 Ma Z J. Emulsion and oily wastewater treatment technology, China Petrochemical Press, China, 2006, pp. 8 (in Chinese).
马自俊.乳状液与含油污水处理技术. 中国石化出版社, 2006, pp. 8.
5 Xia L X, Cao G Y, Lu S W,et al. Chemical Research and Application, 2002, 14(6), 623 (in Chinese).
夏立新, 曹国英, 陆世维, 等. 化学研究与应用, 2002, 14(6), 623.
6 Pensini E, Harbottle D, Yang A F, et al. Energy & Fuels, 2014, 28(11), 6760.
7 Zhang L F, Ying H, Yan S, et al. Fuel, 2018, 226, 381.
8 Zargar G, Ghevsari R G, Takassi M A, et al. Oil & Gas Science & Technology, 2018, 73, 7.
9 Islam M S, Mccutcheon J R, Rahaman M S, et al. Journal of Membrane Science, 2017, 537, 297.
10 Liu S Z, Zhang Q, Fan L Y, et al. Industrial & Engineering Chemistry Research, 2020, 59, 11713.
11 Zhang Y, Zhang Q, Zhang R Y, et al. New Journal of Chemistry, 2019, 43, 6343.
12 Hsiao S T, Wang Y S, Liao W H, et al. ACS Applied Materials & Interfaces, 2014, 6(13), 10667.
13 Wu D X, Wu W J, Yu Z Y, et al. Industrial & Engineering Chemistry Research, 2014, 53(52), 20139.
14 Tjandra R, Lui G, Veilleux A, et al. Industrial & Engineering Chemistry Research, 2015, 54(14), 3657.
15 Qin J, Qiu F X, Rong X S, et al. Journal of Applied Polymer Science, 2015, 131(21), 8558.
16 Wang C F, Lin S J. ACS Applied Materials & Interfaces, 2013, 5(18), 8861.
17 Deng S, Gang Y, Jiang Z, et al. Colloids & Surfaces A-Physicochemical & Engineering Aspects, 2005, 252(2-3), 113.
18 Nie C, Lu X, Di G, et al. Energy & Fuels, 2016, 30(11), 9686.
19 Chen D, Li F, Gao Y, et al. Water, 2018, 10(12), 1874.
20 Yoon D H, Jang J W, Cheong I W, et al. Colloids & Surfaces A-Physicochemical & Engineering Aspects, 2012, 411, 18.
21 Freddi G, Tsukada M, Beretta S, et al. Journal of Applied Polymer Science, 2015, 71(10), 1563.
22 Xiao C B, Lu Y S, Zhang L N, et al. Journal of Applied Polymer Science, 2001, 81(4), 882.
23 Wong C S, Badri K H. Materials Sciences and Applications, 2011, 3(2), 78.
24 Liu Y, Ma J, Wu T, et al. ACS Applied Materials & Interfaces, 2013, 5(20), 10018.
25 Biswal D R, Singh R P. Carbohydrate Polymers, 2004, 57(4), 379.
26 Merlin D L, Sivasankar B. European Polymer Journal, 2009, 45(1), 165.
27 Kraemer R H, Zammarano M, Linteris G T, et al. Polymer Degradation & Stability, 2010, 95(6), 1115.
28 Cai D, Jin J, Yusoh K, et al. Composites Science and Technology, 2012, 72(6), 702.
29 Winkler I, Agapova N. Environmental Monitoring and Assessment, 2010, 168(1-4), 115.
30 Malewska E, Prociak A. Polymer, 2015, 60(7-8), 472.
31 Dai G C, Zhang Z T, Du W N, et al. Journal of Cleaner Production, 2019, 226, 18.
32 Si Y, Fu Q X, Wang X Q, et al. ACS Nano, 2015, 9(4), 3791.
33 Tang F L, Xu G J, Ma T,et al. Materials, 2018, 11(9), 1488.
34 Pinotti A, Zaritzkv N. Waste Management, 2001, 21(6), 535.
35 Zhu J, Zhang G, Li J. Journal of Applied Polymer Science, 2011, 120(1), 518.
36 Raj P, Batchlor W, Blanco A, et al. Journal of Colloid and Interface Science, 2016, 481, 158.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[14] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[15] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed