Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21060034-7    https://doi.org/10.11896/cldb.21060034
  高分子与聚合物基复合材料 |
聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究
郑梓璇1, 王德刚2, 梁国杰1, 栗丽1, 王馨博1, 苏茹月1, 李凯1
1 军事科学院防化研究院国民核生化灾害防护国家重点实验室,北京 100191
2 国防科技大学空天科学学院,长沙 410003
Preparation of Carbon Foam Insulation Material from Polyurethane Foam Impregnated with Phenolic Resin Solution
ZHENG Zixuan1, WANG Degang2, LIANG Guojie1, LI Li1, WANG Xinbo1, SU Ruyue1, LI Kai1
1 State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
2 College of Astronautical Sciences, National University of Defense Technology, Changsha 410003, China
下载:  全 文 ( PDF ) ( 4567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚氨酯泡沫为模板,硼化酚醛树脂为碳源,通过液相浸渍烘干、氧化稳定化、高温热解工艺制备网状玻璃炭泡沫(RVC)材料,通过对材料的物相组成、热解聚缩过程以及高温隔热(1 200 ℃)、压缩性能进行测试分析,研究了不同质量浓度的碳源对RVC材料密度、收缩率、微观形貌的影响。结果表明,采用模板法浸渍制备的RVC材料孔径分布均匀(200~500 μm)、密度低(0.041~0.065 g/cm3),可通过调控浸渍液的浓度,增大材料的平均孔径,使得RVC的有效残炭率由32.6%升至49.5%,同时,线收缩率从20%降低至5%。热失重过程表明氧化稳定化处理能够将热塑性酚醛树脂转化为热固性树脂并在热解炭化阶段稳定地附着在聚氨酯骨架上,避免在最终的炭泡沫结构中产生应力和宏观缺陷。所得RVC材料在实验密度范围内对应的高温热导率与密度呈负相关,在1 200 ℃下热导率为0.339 W·(m·K)-1,具有良好的高温隔热性能,同时材料的应力-应变曲线表现出良好的静态压缩韧性,可在热防护领域中加以利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑梓璇
王德刚
梁国杰
栗丽
王馨博
苏茹月
李凯
关键词:  聚氨酯泡沫  液相酚醛树脂  网状玻璃炭泡沫  线收缩率  高温热导率  压缩强度    
Abstract: Using polyurethane foam as template and thermosetting borated phenolic resin as carbon source, reticulated glass carbon (RVC) foams were prepared by liquid phase impregnation and drying, oxidation stabilization and high temperature pyrolysis processes. The phase composition, pyrolysis and shrinkage process, high temperature heat insulation (1 200 ℃) and compression properties of the material were tested and analyzed. The effects of concentrations of carbon sources on the density, shrinkage and microstructure of RVC foams were studied. The results of the physical and chemical property tests and SEM showed that the diameter distribution of RVC foams were uniform (200—500 μm), and the densities were low (0.041—0.065 g/cm3). The average pore size of the material could be increased by the concentration of impregnation solution. The effective carbon residual rate of RVC foam increased from 32.6% to 49.5%, and the linear shrinkage rate decreased from 20% to 5%. The thermogravimetric process showed that the oxidation stabilization treatment could transform the thermoplastic phenolic resin into thermosetting resin which could stably adhere to the polyurethane preform skeleton during the pyrolysis and carbonization stage, avoiding the stress and macroscopic defects in the final carbon foam structure. The thermal conductivities of RVC materials in the experimental density range were negatively correlated with the density, which could be as low as 0.339 W·(m·K)-1 at 1 200 ℃, showing good thermal insulation performance. At the same time, the stress-strain curves of the material showed good static compression toughness, which could be used in the field of thermal protection.
Key words:  polyurethane foam    liquid phase phenolic resin    reticulated vitreous carbon foam    line shrinkage    thermal conductivity at high temperature    compression strength
发布日期:  2022-04-07
ZTFLH:  TB35  
基金资助: 预先研究项目(305080501HT01)
通讯作者:  750455@sohu.com   
作者简介:  郑梓璇,2015年6月毕业于中国矿业大学(北京),获得工学学士学位。现为军事科学院防化研究院硕士研究生,在李凯研究员的指导下进行研究。目前主要研究方向为碳基热管理材料。
李凯,军事科学院防化研究院研究员、硕士研究生导师。1998年国防科技大学航天与材料工程学院材料专业本科毕业,分别于2001年和2006年在防化研究院环境工程专业获得工学硕士和博士学位,并留院工作至今。目前主要从事炭泡沫、炭气凝胶、二氧化硅气凝胶、活性炭等材料的研究和应用工作。申请国防专利6项,其中授权3项;发表论文30余篇,包括Carbon、Journal of Colloid and Interface Science、Environmental Science:Nano、Microporous and Mesoporous Materials、Progress in Natural Science:Materials International和《材料导报》《炭素技术》《新型炭材料》《高等化学学报》《物理化学学报》等。承担国家863、国防科工局和军队相关研究等课题20余项,获军队科技进步二等奖2项、三等奖4项。
引用本文:    
郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
ZHENG Zixuan, WANG Degang, LIANG Guojie, LI Li, WANG Xinbo, SU Ruyue, LI Kai. Preparation of Carbon Foam Insulation Material from Polyurethane Foam Impregnated with Phenolic Resin Solution. Materials Reports, 2022, 36(7): 21060034-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060034  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21060034
1 Manocha S M, Patel K, Manocha L M. Indian Journal of Engineering and Materials Sciences, 2010, 17(5),338.
2 Tentorio A, Casolo-Ginelli U. Journal of Applied Electrochemistry, 1978, 8(3), 195.
3 Wang J. Electrochimica Acta, 1981, 26(12), 1721.
4 Friedrich J M, Ponce-De-León C, Reade G W, et al. Journal of Electroanalytical Chemistry, 2004, 561, 203.
5 Harikrishnan G, Umasankar P T, Khakhar D V. Carbon,2007,45(3),531.
6 Wiener M, Reichenauer G, Hemberger F, et al.International Journal of Thermophysics, 2006, 27(6),1826.
7 Farhan S, Wang R M, Jiang H, et al. Journal of Analytical and Applied Pyrolysis, 2014, 110, 229.
8 Liu Shumeng,Li Xiaowen,Zou Huawei,et al. Plastics Science and Technology, 2012, 40(7), 56(in Chinese).
刘书萌, 李晓文, 邹华维, 等. 塑料科技, 2012, 40(7), 56.
9 Song Jiayin,Sun Fuwen,Cai Yibing,et al. New Chemical Materials, 2021, 49(1), 99(in Chinese).
宋佳音, 孙福文, 蔡以兵, 等. 化工新型材料, 2021, 49(1), 99.
10 Zhou Qichao,Yang Hongliang,Ji Nizhi,et al. Aerospace Materials & Technology, 2015, 45(3), 11(in Chinese).
周启超, 杨红亮, 季妮芝, 等. 宇航材料工艺, 2015, 45(3), 11.
11 Wang Jian,Geng Gangqiang,Zhang Lei,et al. Thermosetting Resin, 2015, 30(2), 13(in Chinese).
王健, 耿刚强, 张磊, 等. 热固性树脂, 2015, 30(2), 13.
12 Shulman G P, Lochte H W. Journal of Applied Polymer Science, 1966, 10(4), 619.
13 Alshrah M, Mark L H, Zhao C, et al. Nanoscale, 2018, 10(22),10564.
14 Lu X, Caps R, Fricke J, et al. Journal of Non-Crystalline Solids, 1995, 188(3), 226.
15 Yoldas B E, Annen M J, Bostaph J. Chemistry of Materials, 2000, 12(8), 2475.
16 Hemberger F, Weis S, Reichenauer G, et al. International Journal of Thermophysics, 2009, 30(4), 1357.
17 Yang J, Wu H, Huang G, et al. Materials & Design, 2017, 133, 224.
18 Li W Q, Zhang H B, Xiong X, et al. Materials Science and Engineering: A, 2010, 527(27), 7274.
19 Li S, Song Y, Song Y, et al. Carbon, 2007, 45(10), 2092.
20 Zhou Fanglang,Yang Jing,Yang Haiyan,et al. New Chemical Materials, 2019, 47(11), 149(in Chinese).
周方浪, 杨静, 杨海艳, 等. 化工新型材料, 2019, 47(11), 149.
[1] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[2] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[3] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[4] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
[5] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[6] 刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
[7] 张振江, 祝丽荔, 金娟. 聚氨酯泡沫吸附剂的制备及其在金属离子富集/分离方面的应用*[J]. 《材料导报》期刊社, 2017, 31(5): 34-39.
[8] 王正洲, 孙皓宇, 徐小燕. 三聚氰胺苯基磷酸盐的合成及在硬质聚氨酯泡沫中的应用[J]. 《材料导报》期刊社, 2017, 31(14): 4-10.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed