Preparation of Carbon Foam Insulation Material from Polyurethane Foam Impregnated with Phenolic Resin Solution
ZHENG Zixuan1, WANG Degang2, LIANG Guojie1, LI Li1, WANG Xinbo1, SU Ruyue1, LI Kai1
1 State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China 2 College of Astronautical Sciences, National University of Defense Technology, Changsha 410003, China
Abstract: Using polyurethane foam as template and thermosetting borated phenolic resin as carbon source, reticulated glass carbon (RVC) foams were prepared by liquid phase impregnation and drying, oxidation stabilization and high temperature pyrolysis processes. The phase composition, pyrolysis and shrinkage process, high temperature heat insulation (1 200 ℃) and compression properties of the material were tested and analyzed. The effects of concentrations of carbon sources on the density, shrinkage and microstructure of RVC foams were studied. The results of the physical and chemical property tests and SEM showed that the diameter distribution of RVC foams were uniform (200—500 μm), and the densities were low (0.041—0.065 g/cm3). The average pore size of the material could be increased by the concentration of impregnation solution. The effective carbon residual rate of RVC foam increased from 32.6% to 49.5%, and the linear shrinkage rate decreased from 20% to 5%. The thermogravimetric process showed that the oxidation stabilization treatment could transform the thermoplastic phenolic resin into thermosetting resin which could stably adhere to the polyurethane preform skeleton during the pyrolysis and carbonization stage, avoiding the stress and macroscopic defects in the final carbon foam structure. The thermal conductivities of RVC materials in the experimental density range were negatively correlated with the density, which could be as low as 0.339 W·(m·K)-1 at 1 200 ℃, showing good thermal insulation performance. At the same time, the stress-strain curves of the material showed good static compression toughness, which could be used in the field of thermal protection.
作者简介: 郑梓璇,2015年6月毕业于中国矿业大学(北京),获得工学学士学位。现为军事科学院防化研究院硕士研究生,在李凯研究员的指导下进行研究。目前主要研究方向为碳基热管理材料。 李凯,军事科学院防化研究院研究员、硕士研究生导师。1998年国防科技大学航天与材料工程学院材料专业本科毕业,分别于2001年和2006年在防化研究院环境工程专业获得工学硕士和博士学位,并留院工作至今。目前主要从事炭泡沫、炭气凝胶、二氧化硅气凝胶、活性炭等材料的研究和应用工作。申请国防专利6项,其中授权3项;发表论文30余篇,包括Carbon、Journal of Colloid and Interface Science、Environmental Science:Nano、Microporous and Mesoporous Materials、Progress in Natural Science:Materials International和《材料导报》《炭素技术》《新型炭材料》《高等化学学报》《物理化学学报》等。承担国家863、国防科工局和军队相关研究等课题20余项,获军队科技进步二等奖2项、三等奖4项。
引用本文:
郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
ZHENG Zixuan, WANG Degang, LIANG Guojie, LI Li, WANG Xinbo, SU Ruyue, LI Kai. Preparation of Carbon Foam Insulation Material from Polyurethane Foam Impregnated with Phenolic Resin Solution. Materials Reports, 2022, 36(7): 21060034-7.
1 Manocha S M, Patel K, Manocha L M. Indian Journal of Engineering and Materials Sciences, 2010, 17(5),338. 2 Tentorio A, Casolo-Ginelli U. Journal of Applied Electrochemistry, 1978, 8(3), 195. 3 Wang J. Electrochimica Acta, 1981, 26(12), 1721. 4 Friedrich J M, Ponce-De-León C, Reade G W, et al. Journal of Electroanalytical Chemistry, 2004, 561, 203. 5 Harikrishnan G, Umasankar P T, Khakhar D V. Carbon,2007,45(3),531. 6 Wiener M, Reichenauer G, Hemberger F, et al.International Journal of Thermophysics, 2006, 27(6),1826. 7 Farhan S, Wang R M, Jiang H, et al. Journal of Analytical and Applied Pyrolysis, 2014, 110, 229. 8 Liu Shumeng,Li Xiaowen,Zou Huawei,et al. Plastics Science and Technology, 2012, 40(7), 56(in Chinese). 刘书萌, 李晓文, 邹华维, 等. 塑料科技, 2012, 40(7), 56. 9 Song Jiayin,Sun Fuwen,Cai Yibing,et al. New Chemical Materials, 2021, 49(1), 99(in Chinese). 宋佳音, 孙福文, 蔡以兵, 等. 化工新型材料, 2021, 49(1), 99. 10 Zhou Qichao,Yang Hongliang,Ji Nizhi,et al. Aerospace Materials & Technology, 2015, 45(3), 11(in Chinese). 周启超, 杨红亮, 季妮芝, 等. 宇航材料工艺, 2015, 45(3), 11. 11 Wang Jian,Geng Gangqiang,Zhang Lei,et al. Thermosetting Resin, 2015, 30(2), 13(in Chinese). 王健, 耿刚强, 张磊, 等. 热固性树脂, 2015, 30(2), 13. 12 Shulman G P, Lochte H W. Journal of Applied Polymer Science, 1966, 10(4), 619. 13 Alshrah M, Mark L H, Zhao C, et al. Nanoscale, 2018, 10(22),10564. 14 Lu X, Caps R, Fricke J, et al. Journal of Non-Crystalline Solids, 1995, 188(3), 226. 15 Yoldas B E, Annen M J, Bostaph J. Chemistry of Materials, 2000, 12(8), 2475. 16 Hemberger F, Weis S, Reichenauer G, et al. International Journal of Thermophysics, 2009, 30(4), 1357. 17 Yang J, Wu H, Huang G, et al. Materials & Design, 2017, 133, 224. 18 Li W Q, Zhang H B, Xiong X, et al. Materials Science and Engineering: A, 2010, 527(27), 7274. 19 Li S, Song Y, Song Y, et al. Carbon, 2007, 45(10), 2092. 20 Zhou Fanglang,Yang Jing,Yang Haiyan,et al. New Chemical Materials, 2019, 47(11), 149(in Chinese). 周方浪, 杨静, 杨海艳, 等. 化工新型材料, 2019, 47(11), 149.