Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20130-20136    https://doi.org/10.11896/cldb.20010014
  金属与金属基复合材料 |
复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析
陈方1, 姚卫星1,2, 吴富强1
1 南京航空航天大学,机械结构力学及控制国家重点实验室,南京 210016
2 南京航空航天大学,飞行器先进设计技术国防重点学科实验室,南京 210016
A Progressive Damage Simulation Method for the Low Velocity Edge-impact Damage and Residual Compression Strength of Composite T-Stiffeners
CHEN Fang1, YAO Weixing1,2, WU Fuqiang1
1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 6788KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料在航空结构件中大量应用,将T型加筋这类主承力构件复材化是当下的主要趋势。冲击损伤具有较低的可探测性,同时会显著降低结构的剩余压缩强度,对航空结构安全极具威胁。鉴于此,本工作提出了一种渐进损伤仿真流程,用于预测复合材料T型加筋受到冲击后的剩余强度。并通过试验实测数据与仿真模型预测值的对比,验证了本工作所述仿真方法的合理性和有效性。结果表明仿真模型能够定量地给出T型加筋的冲击损伤尺度、压缩破坏应变和剩余压缩强度。同时也能够定性地预测T型加筋在冲击后压缩载荷下的应力应变响应以及损伤位置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈方
姚卫星
吴富强
关键词:  复合材料  T型加筋  低速边缘冲击  剩余压缩强度  数值仿真    
Abstract: Composite materials have been widely used in aeronautical structures, even for main load-bearing structures, such as T-cross-sectional stiffe-ners. Impact damage, with low detectability could significantly reduce the residual compressive strength of T-stiffeners. In view of this, a progressive damage simulation process was proposed to predict the mechanical responses of T-stiffeners under impact and compression loading cases. By comparing the experimental data with the predicted values of the simulation model, it was shown that the simulation model could quantitatively give the impact crack length, compression failure strain and residual compression strength. Moreover, the stress-strain responses and final failure morphology could also be predicted by the simulation model. Therefore, the rationality and validity of the simulation method were verified.
Key words:  composite materials    T-stiffener    low-velocity edge impact    residual compressive strength    numerical simulation
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  V258  
基金资助: 江苏高校优势学科建设工程资助项目
通讯作者:  wxyao@nuaa.edu.cn   
作者简介:  陈方,于2013年获得南京航空航天大学飞行器设计与工程专业工学学士学位。目前在南京航空航天大学攻读飞行器设计专业博士学位,主要从事复合材料渐进损伤仿真分析的研究。
姚卫星,目前在南京航空航天大学航空学院(原航空宇航学院)任教授、博士研究生导师。主要从事复合材料损伤力学、飞行器多学科综合设计以及结构疲劳寿命分析等领域的研究。已在国内外知名期刊发表超过200篇学术论文,撰写4部专著,并获得5次省部级以上的科研奖项。
引用本文:    
陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
CHEN Fang, YAO Weixing, WU Fuqiang. A Progressive Damage Simulation Method for the Low Velocity Edge-impact Damage and Residual Compression Strength of Composite T-Stiffeners. Materials Reports, 2020, 34(20): 20130-20136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010014  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20130
1 Sanchu S S, Barbero E, Zaera R, et al. Composites Science and Techno-logy, 2005, 65(13), 1911.
2 Cartie D D R, Irving P E. Composite Part A, 2002, 33(4), 483.
3 Ishikawa T, Sugimoto S, Matsushima M, et al. Composites Science and Technology, 1995, 55(4), 349.
4 Freitas M D, Reis L. Composite Structures, 1998, 42(4), 365.
5 Gonzalez E V, Maimi P, Camanho P P, et al. Composite Structures, 2012, 94(11), 3364.
6 Abir M R, Tay T E, Ridha M, et al. Composite Structures, 2017, 168(1), 13.
7 Tan W, Falzon B G, Chiu L N S, et al. Composite Part A, 2015, 71(1), 212.
8 Rivallant S, Bouvet C, Hongkarnjanakul N. Composite Part A, 2013, 55(1), 83.
9 Aslan Z, Karakuzu R, Okutan B. Composite Structures, 2003, 59(1), 119.
10 Donadon M V, Iannucci L, Falzon B G, et al. Computers and Structures, 2008, 86(11-12), 1232.
11 Shyr T W, Pan Y H. Composite Structures, 2003, 62(2), 193.
12 Hou J P, Petrinic N, Ruiz C, et al. Composites Science and Technology, 2000, 60(2), 273.
13 Jelf P M, Fleck N A. Journal of Composite Materials, 1992, 26(18), 2706.
14 Saunders R A, Lekakou C, Bader M G. Composite Part A, 1998, 29(4), 443.
15 Soutis C, Curtis P T. Composites Science and Technology, 1996, 56(6), 677.
16 Ostre B, Bouvet C, Minot C, et al. Composite Structures, 2016, 152(1), 767.
17 Soto A, Gonzalez E V, Maimi P, et al. Composite Part A, 2018, 109(1), 413.
18 Li N, Chen P H. Composite Structures, 2016, 138(1), 134.
19 Soto A, Gonzalez E V, Maimi P, et al. Composite Structures, 2018, 204(1), 223.
20 Faggiani A, Falzon B G. Composite Part A, 2010, 41(6), 737.
21 Ostre B, Bouvet C, Minot C, et al. Composite Structures, 2015, 126(1), 314.
22 Puck A, Schurmann H. Composites Science and Technology, 1998, 58(7), 1045.
23 Puck A, Kopp J, Knops M. Composites Science and Technology, 2002, 62(3), 371.
24 ASTM International. D7136/D7136M-12, ASTM, USA, 2012.
25 ASTM International. D7137/D7137M-17, ASTM, USA, 2017.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[3] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[4] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[5] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[6] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[7] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[8] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[9] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[10] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[11] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[12] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[13] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[14] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[15] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed