Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2078-2085    https://doi.org/10.11896/cldb.19110098
  金属与金属基复合材料 |
热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化
李健1,2, 左婷婷2, 薛江丽2, 茹亚东2, 赵兴科1, 高召顺2,3, 韩立4, 肖立业2
1 北京科技大学材料科学与工程学院,北京 100083;
2 中国科学院电工研究所多学科交叉研究中心,北京 100190;
3 中国科学院洁净能源创新研究院,大连 116000;
4 中国科学院电工研究所微纳加工技术与智能电气设备研究部,北京 100190
Optimization of Microstructure and Properties of CuCr/CNTs Composites by Hot-pressed Sintering and Rolling
LI Jian1,2, ZUO Tingting2, XUE Jiangli2, RU Yadong2, ZHAO Xingke1, GAO Zhaoshun2,3, HAN Li4, XIAO Liye2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Interdisciplinary Research Center, the Institute of Electrical Engineering of Chinese Academy of Sciences, Beijing 100190, China;
3 Dalian National Laboratory for Clean Energy, CAS, Dalian 116000,China;
4 Micro-nano Fabrication Technology Department, the Institute of Electrical Engineering of Chinese Academy of Sciences, Beijing 100190, China
下载:  全 文 ( PDF ) ( 11679KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于电工材料高电导、高强度的发展需求,本工作通过粉末真空热压烧结成功制备出微量Cr元素掺杂的功能化碳纳米管增强铜基复合材料(CuCr/CNTs),系统研究了热压烧结及轧制工艺对复合材料电导率和力学性能的影响。研究发现,在烧结温度为900 ℃、保温1 h、保压压力为50 MPa的工艺下,样品的电导率高达96.2%IACS,硬度为73.0HV。通过对微观组织与性能的分析,发现热压烧结工艺显著影响基体晶粒的尺寸以及界面处碳化物的数量,界面处适量Cr3C2纳米相的存在可以改善界面润湿性,增强界面结合,有利于电流传递和载荷传递。通过进一步冷轧,CNTs定向排列并均匀分散,样品的电导率和力学性能均有提升,在电导率保持96.6%IACS时,其屈服强度可达311 MPa,拉伸强度达到373 MPa,具有非常好的工程应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李健
左婷婷
薛江丽
茹亚东
赵兴科
高召顺
韩立
肖立业
关键词:  Cu/CNTs复合材料  真空热压烧结  轧制  界面结构  电导率  力学性能    
Abstract: Based on the development demand of high conductivity and high strength of electrical materials, the functionalized carbon nanotubes reinforced copper matrix composites with a trace mount of Cr doping (CuCr/CNTs) were successfully prepared through vacuum hot-pressing sintering. The influence of hot-pressing sintering process on the electrical conductivity and hardness of the samples was systematically studied. The results show that the hot pressing sintering process parameters significantly affect the grain size of the matrix and the amount of carbides formed at the interface. The optimal sintering process for this CuCr/CNTs material is that the sintering temperature is 900 ℃, the holding time is 1 h, and the pressure is 50 MPa. In this process, the appropriate amount of nano Cr3C2 phases formed at the interface, are conducive to the current transfer and load transfer by improving the wettability between Cu and CNTs and enhancing the interface bonding, which leads the electrical conductivity of the sample up to 96.2%IACS and the hardness to 73.0HV. By cold rolling, the electrical conductivity and hardness of the sample could be further improved due to the alignment and the better dispersion state of CNTs, and the suppression of defects. After cold rolling, the electrical conductivity was maintained at 96.6%IACS, the yield strength could reach 311 MPa and the tensile strength could reach 373 MPa, which shows a very good prospect of engineering application.
Key words:  Cu/CNTs composite    vacuum hot-pressing sintering    rolling    interface structure    electrical conductivity    mechanical property
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51901221);中国科学院洁净能源创新研究院合作基金(DNL180304)
通讯作者:  gaozs@mail.iee.ac.cn   
作者简介:  李健,2017年6月毕业于吉林大学,取得材料科学与工程学学士学位。2017年至今在北京科技大学材料科学与工程学院攻读硕士学位,2018年9月至今在中国科学院电工研究所进行联合培养,主要研究方向为高导电纳米碳/Cu复合材料。
高召顺,中国科学院电工研究所研究员。2009年毕业于中科院电工研究所并获得工学博士学位。长期从事新型电工材料研究工作,目前主要致力于通过纳米碳掺杂和纳米技术提高常规铜、铝导线导电性能的研究。
引用本文:    
李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
LI Jian, ZUO Tingting, XUE Jiangli, RU Yadong, ZHAO Xingke, GAO Zhaoshun, HAN Li, XIAO Liye. Optimization of Microstructure and Properties of CuCr/CNTs Composites by Hot-pressed Sintering and Rolling. Materials Reports, 2021, 35(2): 2078-2085.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110098  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2078
1 Hjortstam O, Isberg P S, Derholm S, et al. Applied Physics A (Materials Science Processing), 2004, 78(8), 1175.
2 Subramaniam C, Yamada T, Kobashi K, et al. Nature Communications, DOI:10.1038/ncomms3202.
3 Zhao Q, Tan S, Xie M, et al. Journal of Alloys and Compounds, 2018, 737, 31.
4 Sun S Q, Mao L, Liu Z M, et al. Journal of Hebei University of Science and Technology, 2000, 21(1), 19(in Chinese).
孙世清, 毛磊, 刘宗茂, 等.河北科技大学学报, 2000, 21(1), 19.
5 Xiong L, Liu K, Shuai J, et al. Advanced Engineering Materials, 2018, 20(5), 1700805.
6 Cheng X F. Preparation, microstructure and properties of carbon nanomaterial reinforced copper matrix composites. Master's Thesis, Kunming University of Science and Technology, China, 2018(in Chinese).
陈小丰.碳纳米材料增强铜基复合材料的制备、组织及性能研究. 硕士学位论文, 昆明理工大学, 2018.
7 Cheng B, Bao R, Yi J, et al. Journal of Alloys & Compounds, 2017, 722, 852.
8 Cho S, Kikuchi K, Lee E, et al. Scientific Reports, 2017, 7, 14943.
9 Parka M, Kim B, Kim S, et al. Carbon, 2011, 49, 811.
10 Wang J W, Zhang J J, Fan T X. Materials Review A: Review Papers, 2018,32(9), 2932(in Chinese).
王婧雯, 张静静, 范同祥.材料导报:综述篇, 2018,32(9),2932.
11 Zuo T T, Li J, Gao Z S, et al. Materials Today Communications, 2020, 23, 100907.
12 Pham V T, Bui H T, Tran B T, et al. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2(1), 015006.
13 Huang P Y. Principle of powder metallurgy, Metallurgical Industry Press, China, 1982(in Chinese).
黄培云.粉末冶金原理, 冶金工业出版社, 1982.
14 Fu S L,Liu P, Hui X H, et al. Nonferrous Metal Materials and Enginee-ring, 2017, 38(2), 78(in Chinese).
付少利, 刘平, 喙小红, 等.有色金属材料与工程, 2017, 38(2), 78.
15 Chu K, Jia C, Li W P, et al. Physica Status Solidi A, 2013, 210(3), 594.
16 Liu Y L, Peng D D, Zhang Hui, et al. Journal of Functional Materials, 2019, 50(1), 1183(in Chinese).
刘宇宁, 彭冬冬, 张辉, 等.功能材料, 2019, 50(1), 1183.
17 Ye Y S, Zuo X Q, Yang M N, et al. Journal of Functional Materials, 2014, 45(19), 19030(in Chinese).
叶雨顺, 左孝青, 杨牧南, 等. 功能材料, 2014, 45(19), 19030.
18 Guo X X, Wang Bo, Yang Z Y.Acta Materiae Compositae Sinica, 2014, 31(1), 152(in Chinese).
郭俊贤, 王波, 杨振宇.复合材料学报, 2014, 31(1), 152.
19 Guo Z Q. Development and strengthening mechanism of high performance copper-based electrical contact composites.Ph.D. Thesis, Shandong University, China, 2011(in Chinese).
郭忠全.高性能铜基电接触复合材料的研制及强化机理研究. 博士学位论文, 山东大学, 2011.
20 Barai P, Weng G J. International Journal of Plasticity, 2011, 27(4), 539.
21 Nouri N, Ziaei-rad S, Adibi S, et al. Materials and Design, 2012, 34, 1.
22 Bakshi S R, Agarwal A. Carbon, 2011, 49(2), 533.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[3] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[4] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[5] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[6] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[7] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[8] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[9] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[10] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[11] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[12] 晁代义, 于芳, 李红萍, 高振文, 张倩, 吕正风, 程仁策. 均匀化工艺对大尺寸7075铝合金组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 362-364.
[13] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[14] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[15] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed