Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2074-2077    https://doi.org/10.11896/cldb.20090081
  金属与金属基复合材料 |
Fe-Mn-Al-Nb系轻质低温钢的组织和性能
何金珊1, 方平1, 王西涛1,2, 武会宾1
1 北京科技大学钢铁共性技术协同创新中心,北京 100083;
2 齐鲁工业大学(山东省科学院),新材料研究所,山东省轻质高强金属材料省级重点实验室,济南 250014
Microstructure and Mechanical Properties of Fe-Mn-Al-Nb Light-weight Cryogenic Steel
HE Jinshan1, FANG Ping1, WANG Xitao1,2, WU Huibin1
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China
下载:  全 文 ( PDF ) ( 5554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了一种低层错能并具有稳定奥氏体组织的轻质Fe-Mn-Al-Nb系低温钢,经680 ℃回火2.5 h,其屈服和抗拉强度分别达到了442 MPa和658 MPa,且低温韧性达到了148 J,相比传统Ni系低温钢的低温韧性提高了80~120 J。对低温冲击后的组织进行表征发现,这主要是由于产生了大量纳米孪晶协调变形,极大地提高了实验钢的低温韧性。另外,通过对实验钢回火前后的组织进行表征,发现回火后析出了大量纳米级的NbC,明显提高了Fe-Mn-Al系钢板的屈服强度和抗拉强度,同时对延伸率的影响较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何金珊
方平
王西涛
武会宾
关键词:  Fe-Mn-Al-Nb  轻质低温钢  显微组织  力学性能    
Abstract: In this work, a Fe-Mn-Al-Nb light-weight cryogenic steel with low stacking faults and stable austenite was designed. After tempering at 680 ℃ for 2.5 h, the yield strength and ultimate strength have reached 442 MPa and 658 MPa respectively. At the same time, its cryogenic impact absorbed energy was 148 J, which has improved by 80—120 J, compared with conventional Ni cryogenic steels. By microstructure characterization after low temperature impact test, it was found that compatible deformation by lots of nanotwins has led to the large improvement of low temperature toughness. In addition, the precipitation of a large amount of nano-size NbC has improved the tensile strength with little influence on elongation after tempering.
Key words:  Fe-Mn-Al-Nb    light-weight cryogenic steel    microstructure    mechanical property
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG142.71  
基金资助: 国家重点研发计划重点专项(2017YFB0305003-01)
通讯作者:  wuhb@ustb.edu.cn   
作者简介:  何金珊,钢铁共性技术协同创新中心助理研究员,于2018年毕业于德国亚琛工业大学,获得工学博士学位。目前主要从事钢铁与高温合金力性关系及有限元模拟计算研究。
武会宾,钢铁共性技术协同创新中心,教授,博士研究生导师,先进能源用钢团队负责人,2013—2014年美国韦恩州立大学工程学院访问学者。目前主要从事材料加工新工艺新技术、高品质钢铁结构材料研究与开发、耐蚀/耐磨/低温服役材料显微结构调控技术等研究。承担了15项国家及省部级科研项目,50多项校企合作项目;发表学术论文120余篇,主编专著2部,获得授权发明专利36项,省部级科技进步一等奖2项,二等奖2项。
引用本文:    
何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
HE Jinshan, FANG Ping, WANG Xitao, WU Huibin. Microstructure and Mechanical Properties of Fe-Mn-Al-Nb Light-weight Cryogenic Steel. Materials Reports, 2021, 35(2): 2074-2077.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090081  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2074
1 Yang Y H, Cai Q W, Wu H B, et al. Acta Metallica Sinica, 2009, 45(3), 270(in Chinese).
杨跃辉, 蔡庆伍, 武会宾, 等. 金属学报, 2009, 45(3), 270.
2 Nakanishi D, Kawabata T, Aihara S. Materials Science and Engineering: A, 2018, 723, 238.
3 Lee J, Sohn SS, Hong S, et al. Metallurgical and Materterials Transaction A, 2014, 45, 5419.
4 Kim H, Ha Y, Kwon K H, et al. Acta Materialia, 2015, 87, 332.
5 Sohn S S, Hong S, Lee J, et al. Acta Materialia, 2015, 100, 39.
6 Sobral M D, Mei P R, Kestenbach H J. Materials Science and Enginee-ring: A, 2004, 367, 317.
7 Xie Z J, Ma X P, Shang C J, et al. Materials Science and Engineering: A, 2015, 641, 37.
8 Curtze S, Kuokkala V T, Oikari A, et al. Acta Materialia, 2011, 59, 1068.
9 Allain S, Chateau J P, Bouaziz O, et al. Materials Science and Enginee-ring: A, 2004, 387, 158.
10 Chen Y, Zhang X, Cai Z, et al. Steel Research International, 2020, 91, 1900660.
11 Okaguchi S, Hashimoto T. ISIJ International, 1992, 32, 283.
12 Speer J G, Michael J R, Hansen S S. Metallurgical and Materterials Transaction A, 1987, 18, 211.
13 Luo Z C, Huang M X. Scripta Materialia, 2020, 178, 264.
14 Zhi H, Zhang C, Antonov S, et al. Acta Materialia, 2020, 195, 371.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[3] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[4] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[5] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[6] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[7] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[8] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[9] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[10] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[11] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[12] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[13] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[14] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[15] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed