Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2109-2114    https://doi.org/10.11896/cldb.20040193
  金属与金属基复合材料 |
线能量对铝/钢双光束激光焊接接头组织及性能的影响
韩善果1,2, 杨永强1, 罗子艺2, 蔡得涛2, 郑世达2
1 华南理工大学机械与汽车工程学院,广州 510641;
2 广东省焊接技术研究所(广东省中乌研究院),广东省现代焊接技术重点实验室,广州 510650
Effect of Linear Heat Input on Microstructure and Performance of Joint Conducted by Dual-beam Laser Welding
HAN Shanguo1,2, YANG Yongqiang1, LUO Ziyi2, CAI Detao2, ZHENG Shida2
1 School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China;
2 Guangdong Provincial Key Laboratory of Modern Welding Technology, Guangdong Welding Institute, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 5835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究线能量对铝钢异种金属双光束激光焊接接头组织和性能的影响,本工作通过激光双光束铝钢搭接焊工艺优化实验,获取了焊接工艺窗口,研究了焊接线能量与焊缝成形、显微组织和接头性能的关系。结果表明:不同焊接速度下,线能量过大或过小将导致焊缝出现坑洞或未连接,焊接速度超过0.05 m/s时,线能量的最高值和最低值基本维持不变,且线能量与熔深成正比,与熔宽无相关性。低线能量的焊接接头的抗剪切力为130.70 N/mm,断裂位置位于铝合金焊缝,而高线能量的焊接接头的抗剪切力仅有35.76 N/mm,断裂位置位于铝钢界面焊缝。低线能量接头的显微组织为板条马氏体,显微硬度的最高和最低值分别位于热影响区和焊缝中心,而高线能量接头的显微组织为粗大柱状晶或片状马氏体,显微硬度的最低值位于熔合区。在低线能量和高线能量接头处,主、辅助光束共同作用面积分别占整个焊缝截面积的1/3和2/3。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩善果
杨永强
罗子艺
蔡得涛
郑世达
关键词:  双光束焊接  焊缝成形  接头性能  显微组织  线能量    
Abstract: In order to research the connections between linear heat input and dissimlar metals welding of Al/steel, the relationships between linear heat input and welding formation, microstructure, joint performance have been researched according to the process window acquired by optimiza-ting experiments made use of dual-beam laser. The results show that inappropriate linear heat input will result in pothole on weld surface or invalid jointing, while both laser power are few alteration when the welding velocity surpass 0.05 m/s. Linear heat input is directly proportional to penetration, but has no correlation with melting width. The fracture location of linear low heat input joint is at the interface of alumnium and dual-phase steel with shear strength of 130.70 N/mm. While the fracture of high linear heat input joint emerges in alumnium weld with the shear strength of 35.76 N/mm. The microstructure at low linear heat input is consists of lath martensite, and lowest and highest micro-hardness are found in the center of weld and HAZ respectively, but for high linear heat input joint, the microstructure is make up of martensite with coarse columnar crystals and flakes, and the lowest micro-hardness zone of high linear heat input joint is appear in fusion line. The area effectted by main and auxiliary beams occupies two in three of weld area at high linear heat input, which bigger than that area at low linear heat input.
Key words:  dual-beam welding    welding formation    joint performance    microstructure    linear heat input
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG442  
基金资助: 广东省科学院项目(2017GDASCX-0411;2019GDASYL-0501011;2018GDASCX-0803);广东省科技计划项目 (2019A050508006;2018A050506058)
通讯作者:  shanguohan@163.com; meyqyang@163.com   
作者简介:  韩善果,博士研究生,工程师。2012年至今在广东省焊接技术研究所(广东省中乌研究院)从事激光焊接技术研究。
杨永强,华南理工大学教授,博士研究生导师。主要从事金属3D打印技术与医学应用,激光增材制造及加工技术和现代焊接技术的研究。
引用本文:    
韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
HAN Shanguo, YANG Yongqiang, LUO Ziyi, CAI Detao, ZHENG Shida. Effect of Linear Heat Input on Microstructure and Performance of Joint Conducted by Dual-beam Laser Welding. Materials Reports, 2021, 35(2): 2109-2114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040193  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2109
1 Cai K F. Lightweight multi-objective collaborative optimization design of hubrid-material BIW. Ph.D. Thesis, Jilin University, China, 2018 (in Chinese).
蔡珂芳. 混合材料白车身轻量化多目标协同优化设计. 博士学位论文, 吉林大学, 2018.
2 Li Y B, Ma Y W, Lou M, et al. Journal of Mechanical Engineering, 2016, 52(24), 1(in Chinese).
李永兵, 马运五, 楼铭, 等. 机械工程学报, 2016, 52(24), 1.
3 Indhu R, Divya S, Manish T, et al. Procedia Manufacturing, 2018, 26, 495.
4 Torkamany M J. Ghaini F M, Poursalehi R, et al. Optics and lasers in Engineering, 2016,79, 9.
5 Li C L, Fan D, Yu X Q, et al. Transactions of Nonfeerous Metal Society of China, 2019, 29, 692.
6 Fei Y, Wang X W, Chai F, et al. Optics and Laser Technology, 2019, 113, 164.
7 Qin G L, Lei Z, Su Y H, et al. Journal of Materials Processing Technology, 2014, 214, 2684.
8 Li L Q, Guo W, Tan C W. Chinese Journal of Lasers, 2012, 39(4), 1(in Chinese).
李俐群, 郭伟, 檀财旺.中国激光, 2012, 39(4), 1.
9 Yuan R, Deng S, Cui H C, et al. Journal of Materials Processing Technology, 2019, 40, 37.
10 Pan F, Cui L, Qian W, et al. Acta Matallurgical Sinica, 2016, 52(11), 1388(in Chinese).
潘峰, 崔丽, 钱伟, 等. 金属学报, 2016, 52(11), 1388.
11 Ma G L. Study on welding charactics and molten pool behaviors of dual-spot fiber laser welding. Ph.D. Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
马国龙. 双焦点光纤激光焊接特性及熔池行为研究. 博士学位论文, 哈尔滨工业大学, 2017.
12 Ma G L, Li L Q, Chen Y B. Chinese Journal of Lasers, 2017, 44(3),1(in Chinese).
马国龙, 李俐群, 陈彦宾.中国激光, 2017, 44(3),1.
13 Narsimhachary D, Dutta K, Shariff S M, et al. Journal of Materials Processing Technology, 2019, 263, 21.
14 Li M, Chen S H, Yang L L, et al. Transactions of the China Welding Institution, 2016, 37(12), 21(in Chinese).
李猛, 陈树海, 杨磊磊, 等. 焊接学报, 2016, 37(12), 21.
15 Guan Q Q, Long J Q, Yu P, et al. Optics and Laser Technology, 2019, 111, 387.
16 Liang J W, Qiu X M, Hu Q W, et al. Materials for Mechanical Enginee-ring, 2018, 42(1), 54(in Chinese).
梁静伟, 邱小明, 胡庆伟, 等. 机械工程材料, 2018, 42(1),54.
17 Du H B, Liu C J, Wang W R, et al. Shanghai Metails, 2017, 39(1), 20(in Chinese).
杜汉斌, 刘成杰, 王武荣, 等. 上海金属, 2017, 39(1), 20.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[3] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[4] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[7] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[8] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[9] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[10] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[11] 锅渺, 李莎, 赵利平, 韩建超, 王涛. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22): 22087-22092.
[12] 孙跃, 冯曰海, 刘思余, 王克鸿. 大厚度高氮钢多层多道等离子弧增材构件的组织与性能分析[J]. 材料导报, 2020, 34(22): 22118-22123.
[13] 张帅, 李全安, 朱宏喜, 陈晓亚, 王颂博, 关海昆. 热处理对Mg-11Gd-3Y-0.6Ca-0.5Zr合金显微组织和腐蚀行为的影响[J]. 材料导报, 2020, 34(20): 20070-20075.
[14] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[15] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed