Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22118-22123    https://doi.org/10.11896/cldb.19080016
  金属与金属基复合材料 |
大厚度高氮钢多层多道等离子弧增材构件的组织与性能分析
孙跃1,2, 冯曰海1,2, 刘思余1, 王克鸿1,2
1 南京理工大学材料科学与工程学院,南京 210094
2 南京理工大学工业和信息化部受控电弧增材制造与焊接重点实验室,南京 210094
Microstructure and Mechanical Properties of the Large Thickness High Nitrogen Austenitic Stainless Steel Component Deposited by Multi-layer and Multi-pass Plasma Arc Additive Manufacturing Process
SUN Yue1,2, FENG Yuehai1,2, LIU Siyu1, WANG Kehong1,2
1 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 MIIT Key Laboratory of Intelligent Controlled-arc Additive Manufacturing, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 6657KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以自研的高氮奥氏体不锈钢焊丝为增材丝材,采用等离子弧成功堆敷了25 mm大厚度高氮钢构件。采用X射线检测、光学显微镜、扫描电镜、能谱仪和机械试验机对增材构件的缺陷、成分、组织和力学性能进行了检测分析,详细考察了堆敷速度对组织和力学性能的影响,揭示了大厚度多层多道增材制造的组织变化规律和性能增强机制。结果表明:大厚度高氮钢增材构件内部存在少量气孔,并且构件内合金元素分布均匀。试样的组织大部分为奥氏体,还有少量的δ铁素体和弥散分布的氮化物,层间和道间均分布着铁素体带。当堆敷速度由30 cm/min下降到18 cm/min时,上下两层相邻焊道交界处铁素体带的宽度由160 μm降低到35 μm,每层热输入量由1.275×104 kJ降到1.042×104 kJ;试样的横向和纵向平均抗拉强度分别提高90 MPa、76 MPa,横向和纵向平均延伸率分别提高6.5%、7.0%,横向和纵向平均冲击韧度分别提高12.07 J/cm2、4.02 J/cm2,试样的平均显微硬度提高了22.2HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙跃
冯曰海
刘思余
王克鸿
关键词:  高氮钢  等离子弧增材  多层多道  显微组织  力学性能    
Abstract: High nitrogen austenitic stainless steel (HNS) components of 25 mm thick were deposited successfully by wire and plasma arc additive manufacturing process, in which the self-developed HNS wire is selected as the filling material. Then weld defects, chemical composition, microstructures and mechanical properties of HNS components were tested and analyzed by X-ray detection, SEM, EDS and mechanical testing machine. Moreover, the influences of deposited speed on microstructure and mechanical properties were investigated in details, then the microstructure evolution and enhancement mechanism of multi-layer and multi-pass additive manufacturing process were revealed. Experiment results show that only few tiny pores are found in the deposited samples,and all the alloy elements is evenly distributed in deposited components. The microstructure of the effective deposited layers is composed of large amount of austenite, few d-ferrite and some nitrides. Meanwhile, lots of ferrite bands are also found at the interfaces of both adjacent deposited layers and adjacent deposited beads. Furthermore, with the deposited speed reducing from 30 cm/min to 18 cm/min, the width of the ferrite band between the upper and lower layers decreases from 160 μm to 35 μm, and the heat input of each deposited layer decreases from 1.275×104 kJ to 1.042×104 kJ. In addition, the ultimate tensile strength of the deposited samples in horizontal direction and that in vertical direction individually increased by 90 MPa and 76 MPa on an average, the mean elongation in both horizontal direction and vertical direction individually improved by 6.5% and 7.0%, and the average impact toughness in two directions individually enhanced by 12.07 J/cm2 and 4.02 J/cm2. Hardness testing results exhibited the microhardness of the HNS samples raised by 22.2 HV on an average.
Key words:  high nitrogen austenitic stainless steel (HNS)    plasma arc    multi-layer and multi-pass additive manufacturing    microstructure    mechanical property
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG456.2  
基金资助: 国家部委项目(17-H863);国防研究项目(41423050125)
通讯作者:  fyh@njust.edu.cn   
作者简介:  孙跃,2017年毕业于南京理工大学,获得材料成型及控制工程学士学位,现为南京理工大学材料科学与工程学院硕士研究生,导师冯曰海。主要从事等离子弧增材制造、先进焊接方法及工艺方面研究。冯曰海,工学博士,南京理工大学副教授,硕士研究生导师。2006年毕业于北京工业大学机械电子工程专业。2014—2015年在英国克兰菲尔德大学激光与焊接研究中心进行访问合作研究。现主要从事先进焊接方法与工艺、受控电弧增材制造(3D打印)方法与工艺、机器人自动化装备与工艺、电弧过程传感与智能控制等方向的研究工作,专注从事机器人自动化焊接技术20余年。获得国家授权发明专利20余项,发表SCI/EI收录论文20余篇,获得江苏省科学技术成果奖二等奖1项,获得兵器科技进步二等奖1项。
引用本文:    
孙跃, 冯曰海, 刘思余, 王克鸿. 大厚度高氮钢多层多道等离子弧增材构件的组织与性能分析[J]. 材料导报, 2020, 34(22): 22118-22123.
SUN Yue, FENG Yuehai, LIU Siyu, WANG Kehong. Microstructure and Mechanical Properties of the Large Thickness High Nitrogen Austenitic Stainless Steel Component Deposited by Multi-layer and Multi-pass Plasma Arc Additive Manufacturing Process. Materials Reports, 2020, 34(22): 22118-22123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080016  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22118
1 Talha M, Behera C K, Sinha O P. Materials Science and Engineering C, 2013, 33(7), 3563.2 Miyano Y, Fujii H, Sun Y, et al. Materials Science and Engineering A, 2011, 528(6), 2917.3 Xin X C, Zhang J J, Huang G Z, et al. Applied Laser, 2017, 37(5), 668 (in Chinese).辛秀成, 张今捷, 黄根哲, 等.应用激光, 2017, 37(5), 668.4 Li D J, Lu S P, Li D Z, et al. Acta Metallurgica Sinica, 2013, 49(2), 129(in Chinese).李冬杰, 陆善平, 李殿中, 等.金属学报, 2013, 49(2), 129.5 Horgar A, Fostervoll H, Nyhus B, et al. Journal of Materials Processing Technology, 2018, 259, 68.6 Lin J J, Lv Y H, Liu Y X, et al. Materials and Design, 2016, 102, 30.7 Martina F, Mehnen J, Williams S W, et al. Journal of Materials Proces-sing Technology, 2012, 212(6), 1377.8 Kobayashi Y, Sagara M, Kobayashi Y, et al. Materials and Manufactu-ring Processes, 2004, 19(1), 19.9 Mohammed R, Reddy G M, Rao K S. Defence Technology, 2017, 13(2), 59.10 Wen Z L, Zhou Q, Yu J. Hot Working Technology, 2017, 46(23), 235(in Chinese).闻章鲁, 周琦, 余进.热加工工艺, 2017, 46(23), 235.11 Pai A, Sogalad I, Albert S K, et al. Procedia MaterialsScience, 2014, 5(2-3), 1482.12 Liu H D, Wang D Z, Wei H D, et al. Special Steel, 2009, 30(4), 45(in Chinese).刘海定, 王东哲, 魏捍东, 等. 特殊钢, 2009, 30(4), 45.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed