Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9132-9142    https://doi.org/10.11896/cldb.18120082
  金属与金属基复合材料 |
掺杂方式对钼合金组织与力学性能影响的研究进展
李世磊1,2, 胡平1,2, 段毅3, 左烨盖1,2, 邢海瑞1,2, 李辉1,2, 邓洁1,2, 冯鹏发4, 王快社1,2, 胡卜亮1,2
1 西安建筑科技大学冶金工程学院,西安 710055
2 西安建筑科技大学功能材料国家地方联合工程研究中心,西安 710055
3 航空工业庆安集团有限公司,西安 710077
4 金堆城钼业股份有限公司,西安 710077
Research Status of the Effect of Doping Methods on Microstructure and Mechanical Properties of Molybdenum Alloy
LI Shilei1,2, HU Ping1,2, DUAN Yi3, ZUO Yegai1,2, XING Hairui1,2, LI Hui1,2, DENG Jie1,2, FENG Pengfa4, WANG Kuaishe1,2, HU Boliang1,2
1 School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 National and Local Joint Engineering Research Center for Functional Materials, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 AVIC Qingan Group Co., Ltd., Xi’an 710077, China
4 Jinduicheng Molybdenum Group Co., Ltd., Xi’an 710077, China
下载:  全 文 ( PDF ) ( 31742KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼是一种银白色金属,具有熔点高、强度大、蠕变速率低、膨胀系数小、导热导电及抗热震性能优、抗磨损和抗腐蚀性能强等特性,广泛应用于化学工业、石油工业、冶金工业、航天工业和核能技术等领域。纯钼在室温下塑性差但在高温下易产生晶界滑动导致较大变形,其在高温下的力学性能较室温下有大幅度衰减,且在高温下易产生较大的蠕变,强度和硬度下降明显。这些特性均限制了纯钼作为结构材料的广泛应用。为了提升钼金属的适用范围,改善钼金属在各种使用场景下的强度及韧性,人们通常在钼金属中加入少量的合金元素,通过微量元素的弥散强化及固溶强化作用清除晶界脆化相,以反应物作为弥散相对钼合金起到强化作用,从而达到提高其性能的目的。在国内外学者的共同探索下,目前已开发出的钼合金有Mo-Al2O3、Mo-La、TZM、TZC等。
钼合金常用的制备方式是粉末冶金法,掺杂是钼合金制备过程中的第一步,不同掺杂方式的选取会对后续钼合金制品的组织与性能产生不同的影响。粉末冶金制备钼合金的过程中常用的掺杂方式有三种:(1)将钼粉与合金元素粉末混合的固-固(S-S)掺杂方式;(2)将合金元素溶解后混入钼(或氧化钼)粉中,干燥后进行还原的固-液(S-L)掺杂方式;(3)利用钼及合金元素的化合物溶液,经干燥、还原制备钼合金的液-液(L-L)掺杂方式。近年来,国内外学者希望通过改进钼合金粉末冶金过程中的掺杂方式来改善钼合金的组织,提升钼合金的性能。研究表明,改进掺杂方式,首先要改进合金粉末的表面状态,使合金粉末的粒度更加细小且分散均匀;其次要使钼合金的烧结坯组织更为均匀,晶粒更加细小,第二相颗粒更加细小且分散;最终由于细晶强化及第二相强化机制使得钼合金的强韧性得到提升。
本文综述了近年来国内外学者在掺杂方式对钼合金组织与性能影响方面的研究,分析了掺杂方式对多种钼合金的粉末状态、显微硬度、相对密度、微观结构、第二相分布以及力学性能等方面的影响,并在现有研究的基础上对未来掺杂方式的发展做了建设性展望,对钼合金的生产有重要的借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李世磊
胡平
段毅
左烨盖
邢海瑞
李辉
邓洁
冯鹏发
王快社
胡卜亮
关键词:  钼合金  合金化  掺杂方式  微观结构  力学性能    
Abstract: Silver-white metal molybdenum having high melting point, high strength, low creep rate, small expansion coefficient, excellent thermal conductivity and thermal shock resistance, and strong anti-wear and anti-corrosion properties, widely used in chemical industry, petroleum industry, metallurgical industry, aerospace industry and nuclear energy technology. Pure molybdenum is poorly plastic at room temperature, and it tends to produce grain boundary sliding at high temperatures, resulting in large deformation. The mechanical properties of pure molybdenum at high temperatures are greatly attenuated compared with those at room temperature, and pure molybdenum tends to produce large creep at high temperatures and the strength and hardness decrease significantly. These properties limit the extensive use of pure molybdenum as a structural material. In order to improve the application range of molybdenum metal and improve the strength and toughness of molybdenum metal in various use scenarios, a small amount of alloying elements are usually added to the molybdenum metal. The grain boundary embrittlement phase is removed by solid solution strengthening and dispersion strengthening of trace elements, and the molybdenum alloy can be strengthened as a reac-tant of the dispersed phase to improve the performance. The molybdenum alloys that have been developed under the joint exploration of scholars at home and abroad include Mo-Al2O3, Mo-La, TZM, TZC, etc.
The common preparation method of molybdenum alloy is powder metallurgy method. Doping is the first step in the preparation process of molybdenum alloy. The selection of different kinds of doping methods will have different effects on the microstructure and properties of subsequent molybdenum alloy products. There are three commonly used doping methods in the preparation of molybdenum alloys by powder metallurgy: (1) a solid-solid (S-S) doping method in which molybdenum powder is mixed with alloy element powder; (2) a solid-liquid (S-L) doping method in which alloying element is dissolved and mixed into molybdenum (or molybdenum oxide) powder, and dried to be reduced; (3) a liquid-liquid (L-L) doping method for preparing a molybdenum alloy by drying and reducing a compound solution of molybdenum and alloying element. In recent years, domestic and foreign scholars hope to improve the microstructure of molybdenum alloy and improve the performance of molybdenum alloy by improving the doping mode of molybdenum alloy powder metallurgy. Studies have shown that the improvement of the doping mode will first improves the surface state of the alloy powder, making the particle size of the alloy powder finer and more uniform. Secondly, the sintered billet structure of the molybdenum alloy is more uniform, the crystal grains are finer, and the second phase particles are finer and more dispersed. Finally, the toughness of the molybdenum alloy is improved due to the presence of fine-grain strengthening and the mechanism of the second phase strengthening.
In this paper, the researches on the microstructure and properties of molybdenum alloys by doping methods in recent years are reviewed,the effects of doping methods on the powder state, microhardness, relative density, microstructure, distribution of second phase and mechanical properties of various molybdenum alloys has been analyzed. Based on the existing research, it has made a constructive outlook for the development of future doping methods, and has important reference significance for the production of molybdenum alloy.
Key words:  molybdenum alloy    alloying    doping methods    microstructure    mechanical properties
                    发布日期:  2020-04-27
ZTFLH:  TG146  
基金资助: 国家重点研发计划“重点基础材料技术提升与产业化”重点专项(2017YFB0306000;2017YFB0305600);陕西省博士后基金(2017);陕西高校青年创新团队(2019-2022);霍英东教育基金会(171101)
通讯作者:  huping1985@126.com   
作者简介:  李世磊,西安建筑科技大学材料加工工程在读研究生,师从胡平教授,主要研究领域为粉末冶金低氧钼钛锆合金的制备及碳、氧在钼钛锆合金中的演变规律。
胡平,1985年1月出生,博士,西安建筑科技大学冶金工程学院材料加工工系教授、博士生导师。先后入选陕西省高校科协青年人才托举计划、陕西省青年科技新星、陕西省普通高校“青年杰出人才”、陕西省高层次人才特殊支持计划青年拔尖人才、西安建筑科技大学首批“优秀青年学者”雁塔学者。研究方向为高性能粉末冶金钼合金及纳米功能材料,主持国家重点研发计划项目子课题、国家自然科学基金、中国博士后科学基金一等资助等各类科研项目15项,在Nano Research、J. Alloy Comp.、Mater. Sci. Eng. A、Materials Letters等国内外学术期刊发表论文50余篇;授权中国发明专利38项,授权实用新型专利2项;获陕西省科技一等奖1项,中国有色金属工业科学技术一等奖2项。
引用本文:    
李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
LI Shilei, HU Ping, DUAN Yi, ZUO Yegai, XING Hairui, LI Hui, DENG Jie, FENG Pengfa, WANG Kuaishe, HU Boliang. Research Status of the Effect of Doping Methods on Microstructure and Mechanical Properties of Molybdenum Alloy. Materials Reports, 2020, 34(9): 9132-9142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120082  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9132
1 Sharma I G, Chakraborty S P, Suri A K. Journal of Alloys & Compounds,2005,393(1),122.
2 Cao W C, Wei S Z, Ren Y X. Rare Metals Letters,2006,25(8),29(in Chinese).
曹维成,刘静,任宜霞.稀有金属快报,2006,25(8),29.
3 Liu Q, Wei S Z, Xu L J. Rare Metals and Cemented Carbides,2011,39(4),50(in Chinese).
刘强,魏世忠,徐流杰.稀有金属与硬质合金,2011,39(4),50.
4 Huang Q, Li Q,Song J X,et al. Materials Review A: Review Papers,2009,23(11),38(in Chinese).
黄强,李青,宋尽霞,等.材料导报:综述篇,2009,23(11),38.
5 Yang J, Nie Z, Wang Y. Applied Surface Science,2003,215(1),87.
6 Yu W Q, Wen X Z, Cheng X M,et al. Rare Metals and Cemented Carbides,2002,30(3),33(in Chinese).
喻玮强,文先哲,陈响明,等.稀有金属与硬质合金,2002,30(3),33.
7 Xiao D H, Yue-Hui H E, Luo W H, et al. Transactions of Nonferrous Metals Society of China (English Edition),2009,19(6),1520.
8 Sun L, Jia C, Cao R, et al. International Journal of Refractory Metals & Hard Materials,2008,26(4),357.
9 Correa E O, Santos J N, Klein A N. International Journal of Refractory Metals & Hard Materials,2010,28(5),572.
10 Xiao D, Xiuxiu L I, Shen T, et al. Journal of Central South University,2015,46(1),81.
11 Zhang L, Chen S, Cheng X, et al. Transactions of Nonferrous Metals Society of China,2012,22(7),1680.
12 Kim H C, Shon 1 J, Yoon J K, et al. International Journal of Refractory Metals & Hard Materials,2006,24(6),427.
13 Iorio L E, Bewlay B P, Larsen M. International Journal of Refractory Metals & Hard Materials,2006,24(4),306.
14 Rong H, Peng Z, Ren X, et at. International Journal of Refractory Metals & Hard Materials,2011,29(6),733
15 Wang L, Sun J, Sun Y J, et al. Rare Metal Materials and Engineering,2007,36(10),1827(in Chinese).
王林,孙军,孙院军,等.稀有金属材料与工程,2007,36(10),1827.
16 Yang X, Tan H, Lin N, et al. International Journal of Refractory Metals & Hard Materials,2015,51,301.
17 Feng P F, Yang Q L, Dang X M, et al. Rare Metals,2015,34(11),1.
18 Cheng P M, Zhang G J, Zhang J Y, et al. Materials Science & Enginee-ring A,2015,640,320.
19 Zhang D D, Ni F, Xu L J, et al. Rare Metals and Cemented Carbides,2011,39(3),35(in Chinese).
张丹丹,倪锋,徐流杰,等.稀有金属与硬质合金,2011,39(3),35.
20 Wang S Q, Ni D Z. Rare Metal Materials and Engineering,1998(4),233(in Chinese).
王思清,倪德忠.稀有金属材料与工程,1998(4),233.
21 Ping H, Wang K, Fan Y, et al. Rare Metal Materials & Engineering,2014,43(6),1502.
22 Yang X, Tan H, Lin N, et al. International Journal of Refractory Metals & Hard Materials,2015,51,301.
23 Schulmeyer W V, Ortner H M. International Journal of Refractory Metals & Hard Materials,2002,20(4),261.
24 Liu G, Zhang G J, Jiang F, et al. Nature Materials,2013,12(4),344.
25 Hu P, Yang F, Deng J, et al. Journal of Alloys & Compounds,2017,711,64.
26 Zhou Y H, Hu P, Chang T, et al. Journal of Functional Materials,2018,49(1),26(in Chinese).
周宇航,胡平,常恬,等.功能材料,2018,49(1),26.
27 Central Iron & Steel Research Institute. Refractory Metal Fracture Analysis Map, Science Press,China,1978.
冶金工业部钢铁研究院.难熔金属断口分析图谱.科学出版社,1978.
28 Wang Z D, Zheng J P, Yang Q F, et al. Atomic Energy Science and Technology,2005,39(S1),42.
王振东,郑剑平,杨启法,等.原子能科学技术,2005,39(S1),42.
29 Luo J H, Wang L, Sun Y J. China Molybdenum Industry,2015(5),54(in Chinese).
罗建海,王林,孙院军.中国钼业,2015(5),54.
30 Sandim H R Z, Padilha A F, Randle V, et al. International Journal of Refractory Metals & Hard Materials,1999,17(6),431.
31 Olevsky E A. Materials Science & Engineering A,1998,23(2),41.
32 Wang Y, Wang D, Zhu W, et al. International Journal of Refractory Metals & Hard Materials,2012,31(3),152.
33 Zhang J, Zhou W, Zhou M, et al. Journal of Beijing Polytechnic University,2002,26(2),124.
34 Zhao J S. Base of dislocation, National Defense Industry Press,China,1989.
赵敬世.位错理论基础,国防工业出版社,1989.
35 Wang D Z, Liu X Y, Zhou M L. Powder Metallurgy Technology,2002,20(2),75(in Chinese).
王德志,刘心宇,周美玲.粉末冶金技术,2002,20(2),75.
36 Bandyopadhyay S N. Engineering Fracture Mechanics,1982,16(6),889.
37 He H C. Effect of doping methods on microstructure and properties of La-TZM alloy sheets. Master’s Thesis, Xi’an University of Architecture and Technology,2014(in Chinese).
何欢承.掺杂方式对La-TZM合金板材组织及性能影响研究.硕士学位论文,西安建筑科技大学,2014.
38 Mueller A J, Bianco R, Buckman R W. International Journal of Refractory Metals & Hard Materials,1999,18(4),205.
39 Iorio L E, Bewlay B P, Larsen M. Metallurgical & Materials Transactions A,2002,33(11),3349.
40 Iorio L E, Bewlay B P, Larsen M. International Journal of Refractory Metals & Hard Materials,2006,24(4),306.
41 Sturm D, Heilmaier M, Schneibel J H, et al. Materials Science & Engineering A,2007,463(1),107.
42 Duan S H, Zhang G S, Wei S Z, et al. Transactions of Materials & Heat Treatment,2011,32(12),29.
43 Zhang G J, Liu G, Sun Y J, et al. International Journal of Refractory Metals & Hard Materials,2009,27(1),173.
44 Feng P, Fu J, Zhao H, et al. Metal Powder Report,2016,71(6),437.
45 Siochi E J, Harrison J S. Mrs Bulletin,2015,40(10),829.
46 Suryanarayana C, Korth G E. Metals & Materials,1999,5(2),121.
47 Yoganarasimhan S R, Rao C N R. Transactions of the Faraday Society,1962,58(58),1579.
48 Wang J, Wang Y, Zhou M. Materials Science & Engineering B,2006,128(1-3),211.
49 Ha K F. The microscopic theory of mechanical properties of metals, Science Press,China,1983(in Chinese).
哈宽富.金属力学性能的微观理论,科学出版社,1983.
[1] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[2] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[3] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[4] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[5] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[6] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[7] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[8] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[9] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[10] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[11] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[12] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[13] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[14] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[15] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed