Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8077-8082    https://doi.org/10.11896/cldb.19040079
  无机非金属及其复合材料 |
煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究
岳莉1, 朱亚明1,2, 高丽娟1, 胡朝帅1,2, 赖仕全1, 赵雪飞1,2
1 辽宁科技大学化工学院,鞍山 114051;
2 辽宁省化学冶金重点实验室,鞍山 114051
Study on the Basic Physical Properties of Quinoline Insoluble Components from Coal Tar Pitch and Micro-structure of Its Derived Pitch Carbon
YUE Li1, ZHU Yaming1,2, GAO Lijuan1, HU Chaoshuai1,2, LAI Shiquan1, ZHAO Xuefei1,2
1 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
2 Liaoning Provincial Key Laboratory of Chemical Metallurgy, Anshan 114051, China
下载:  全 文 ( PDF ) ( 5843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喹啉不溶物(QI)是煤沥青组成中一类大分子碳质颗粒的统称,对煤沥青的性质和应用有着重要的影响。为深入研究煤沥青中喹啉不溶物的基本性质,本研究以喹啉为溶剂,分别对三种典型沥青(中温沥青、氧化改性沥青和热缩聚沥青)进行溶剂萃取分离处理,得到三种喹啉不溶物(QI-M、QI-O和QI-N)。利用元素分析仪、热重分析仪、粒度分析仪和偏光显微镜对三种QI的基础物性进行了表征。通过SEM、XRD、Raman光谱结合分峰拟合的方法对三种喹啉不溶物基沥青炭的微观结构进行了研究。结果表明:QI-M是一种亚微米级球形碳质颗粒,其粒度均匀性最佳;QI-N尺寸较大,是一种粒度分布较为均匀、尺寸约为16 μm的球状炭。三种QI的热解行为迥异,QI-O、QI-N在250~500 ℃内存在热解反应和缩聚反应的协同发生,而QI-M只有热解反应的发生。三种喹啉不溶物基沥青炭QI-M-C、QI-O-C和QI-N-C中,石墨晶体(IG/IAll)含量依次为10.61%、6.84%和12.43%;无定形碳含量(ID3/IAll)依次为9.18%、11.09%和6.06%;晶粒尺寸(Lc)依次为1.62 nm、1.35 nm和1.85 nm。QI-N具有较好的高温可石墨化性,而QI-O的高温可石墨化性欠佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳莉
朱亚明
高丽娟
胡朝帅
赖仕全
赵雪飞
关键词:  喹啉不溶物  基础物性  微观结构    
Abstract: Quinoline insoluble is a kind of macromolecular carbon particle component in the coal tar pitch, which has important influence on the properties and application of coal tar pitch. In order to a detailed analysis of quinoline insoluble, three kinds of quimoline insolubles (QI-M, QI-O and QI-N) which obtained from varies coal tar pitch have been used as raw materials. Briefly, QI-M, QI-O and QI-N have been separated from me-dium pitch, oxidized modified pitch, and thermal polycondensation pitch, respectively. The basic physical properties of three kinds of QIs have been determined by the ultimate analyzer, TGA, particle size analyzer, and polarizing microscope, separately. The microstructure of quinoline insoluble based pitch carbon have been studied by the SEM, XRD, Raman spectrum and the combination of curve-fitted method. The result shown that, QI-M is a kind of submicron carbon sphere with good uniformity. QI-N is a kind of spherical carbon with uniform particle size distribution of about 16 μm. The pyrolisis behavior of three quinoline insolubles is varied. Briefly, both of pyrolysis reaction and condensation reaction have been taken place at the temperature range from 250 ℃ to 500 ℃ for QI-O and QI-N, respectively. However, only pyrolysis reaction has been taken place for QI-M at this temperature range. The contents of graphite crystal (IG/IAll) of quinoline insoluble based pitch carbon (QI-M-C, QI-O-C and QI-N-C) were 10.61%, 6.84%, and 12.43%, respectively. And the contents of disordered carbon (ID3/IAll) were 9.18%, 11.09%, and 6.06%, separately. What’s more, the crystalline sizes (Lc) of each quinoline insoluble based pitch carbons were 1.62 nm, 1.35 nm, and 1.85 nm. QI-N has good graphitization ability, but the graphitization ability of QI-O was poor.
Key words:  quinoline insoluble    basic physical properties    microstructure
                    发布日期:  2020-04-25
ZTFLH:  TQ522.65  
基金资助: 国家自然科学基金(U1361126);辽宁省自然科学基金(20180551218);辽宁省教育厅项目(2017LNQN04);辽宁科技大学优秀人 才培养项目(2018RC07);辽宁科技大学青年基金(2017QN06)
通讯作者:  zhao_xuefei@sohu.com   
作者简介:  岳莉,讲师,在读博士。2005年6月毕业于辽宁石油化工大学,获得化学工艺硕士学位,同年加入辽宁科技大学化工学院工作至今,主要从事煤沥青深加工的研究。
朱亚明,讲师,硕士生导师。2017年7月毕业于辽宁科技大学,获得化学工程与技术博士学位,同年加入辽宁科技大学化工学院工作至今,主要从事煤沥青基炭材料的制备与应用研究。在国内外期刊发表论文20余篇,申请发明专利5项。
赵雪飞,教授,博士生导师。2011年11月毕业于大连理工大学,获得化学工艺博士学位。1982年3月至今在辽宁科技大学化工学院任教,主要从事煤焦油深加工及煤基新型炭材料的制备与应用研究。在国内外期刊发表期刊论文100余篇,申请发明专利10余项,已授权5项,专利成果转让1项。
引用本文:    
岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
YUE Li, ZHU Yaming, GAO Lijuan, HU Chaoshuai, LAI Shiquan, ZHAO Xuefei. Study on the Basic Physical Properties of Quinoline Insoluble Components from Coal Tar Pitch and Micro-structure of Its Derived Pitch Carbon. Materials Reports, 2020, 34(8): 8077-8082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040079  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8077
1 ner F O, Yürüm A, Yürüm Y. Journal of Analytical and Applied Pyrolysis, 2015, 111, 15.
2 Russo C, Ciajolo A, Stanzione F, et al. Fuel, 2019, 245, 478.
3 Zhang X W, Meng Y C, Fan B L, et al. Fuel, 2019, 243, 390.
4 Chen S L, Xie S P, Fan C L, et al. Journal of Saudi Chemical Society, 2018, 22, 316.
5 Fernández-García L, álvarez P, Pérez-Mas A, et al. Fuel, 2017, 206, 99.
6 Yu C R, Zhao N, Guo A J, et al. Chemical Industry and Engineering Progress, 2015, 34(9), 3262(in Chinese).
于传瑞, 赵娜, 郭爱军, 等. 化工进展, 2015, 34(9), 3262.
7 He X, Liu D, Wang Y G, et al. Materials Review B:Research Papers, 2017, 31(11), 142(in Chinese).
贺欣, 刘丹, 王永刚, 等. 材料导报:研究篇, 2017, 31(11), 142.
8 Lu Y, Kocaefe D, Kocaefe Y, et al. Fuel, 2017, 199, 587.
9 Wang L, Li D, Bi Y, et al. Journal of China Coal Society, 2017, 42(4), 1043(in Chinese).
王磊, 李冬, 毕瑶, 等. 煤炭学报, 2017, 42(4), 1043.
10 Cao Q, Xie X L, Li J P, et al. Fuel, 2012, 96, 314.
11 Zhu Y M, Zhao X F, Gao L J, et al. Journal of the Chemical Society of Pakistan, 2018, 40(2), 343.
12 Manoj B, Kunjomana A G. International Journal of Electrochemical Science, 2012, 7, 3127.
13 Morga R, Jolonek I, Kruszewska K, et al. International Journal of Coal Geology, 2015, 144, 130.
14 Ding P, Ji Z Z, Xu B, et al. Journal of Chongqing University of Techno-logy (Natural Science), 2018, 32(4), 127(in Chinese).
丁鹏, 吉泽中, 徐波, 等. 重庆理工大学学报 (自然科学), 2018, 32(4). 127.
15 Zhu Y M, Zhao X F, Gao L J, et al. Spectroscopy and Spectral Analysis, 2017, 37(6), 1919(in Chinese).
朱亚明, 赵雪飞, 高丽娟, 等. 光谱学与光谱分析, 2017, 37(6), 1919.
[1] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[2] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[3] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[4] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[5] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[6] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[7] 杨海鹏, 石玗, 林巧力, 慈文娟, 张刚. 铜表面微结构化对惰性润湿和反应润湿的影响[J]. 材料导报, 2020, 34(16): 16109-16113.
[8] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[9] 覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
[10] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[11] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[12] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[13] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[14] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[15] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed