Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12057-12063    https://doi.org/10.11896/cldb.19070122
  无机非金属及其复合材料 |
钙硅比对铝硅酸盐凝胶形成与特性的影响
覃丽芳, 曲波, 史才军, 张祖华
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Effect of Ca/Si Ratio on the Formation and Characteristics of Synthetic Aluminosilicate Hydrate Gels
QIN Lifang, QU Bo, SHI Caijun, ZHANG Zuhua
Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 6478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发胶凝材料的主要凝胶产物可分为水化硅铝酸钙凝胶(C-A-S-H)和铝硅酸钠凝胶(N-A-S-H)两种,这两种凝胶产物的形成条件与特性尚不十分清楚。本工作利用溶胶-凝胶法合成了与上述水化产物具有类似结构特性的铝硅酸盐凝胶,研究了钙硅比(Ca/Si)的变化对铝硅酸盐凝胶形成与特性的影响。通过X射线衍射(XRD)、傅里叶转换红外光谱(FTIR)、热重-差示扫描量热(TG-DSC)以及透射电镜-能谱(TEM-EDX)等测试技术对不同Ca/Si条件下合成凝胶的物相组成、特征化学结构基团、热稳定性及微观结构进行了分析。结果发现,当Ca/Si<0.6时,N-A-S-H凝胶与C-A-S-H凝胶共存;Ca/Si≥0.6时,只生成C-A-S-H 凝胶。当Ca/Si<1.4时,随钙硅比增大反应产物中低聚合度的结构单元及C-A-S-H凝胶的含量增加,同时三维网络结构中高聚合度的结构单元含量降低;Ca/Si≥1.4时,体系形成富硅凝胶。随着体系中Ca/Si的提高,反应产物由生成无定形的N-A-S-H凝胶向生成结构相对有序的C-A-S-H凝胶转变。此研究结果为碱激发胶凝材料的组成设计提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
覃丽芳
曲波
史才军
张祖华
关键词:  N-A-S-H凝胶  C-A-S-H凝胶  钙硅比  微观结构    
Abstract: There are two types of reaction products for alkali-activated binders. One is an aluminum-substituted calcium silicate hydrates (C-A-S-H), and the other is a highly disordered aluminosilicate gel (N-A-S-H). However, the factors that influence the precipitation mechanism for gels have been not yet well understood. This paper reports a research on the effect of Ca/Si on the formation and properties of synthetic aluminosilicate hydrate gels as models for the gels arising in alkali-activated binders. X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC) and transmission electron microscopy-energy-dispersive X-ray (TEM-EDX) were used to characterize the synthesized gels with various Ca/Si. The results obtained show that N-A-S-H gels coexisted with C-A-S-H gel at Ca/Si<0.6. When Ca/Si≥0.6, only C-A-S-H gel formed. When Ca/Si<1.4, calcium increased the content of C-A-S-H gel phase of low degree of polymerization, and reduced the structural units with high degree of polymerization. In the case of Ca/Si≥1.4, the system form silicon-rich gel rather than more C-A-S-H gel formation. The increase of Ca/Si favored in the formation of C-A-S-H instead of the highly disordered N-A-S-H gel. The results obtained in this study could provide certain theoretical basis and experimental basis for the design of the alkali-activated binder systems.
Key words:  N-A-S-H gel    C-A-S-H gel    molar ratio of calcium to silicon    microstructure
                    发布日期:  2020-05-29
ZTFLH:  TQ172  
基金资助: 国家自然科学基金 (51638008;51878263)
通讯作者:  mcshi@hnu.edu.cn   
作者简介:  覃丽芳,2016年6月毕业于广西大学,获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在史才军教授的指导下进行研究。目前主要研究领域为碱激发胶凝材料水化产物结构特性。
史才军,国家第二批“千人计划”特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985工程创新平台首席科学家、特聘教授、博士生导师,Taylor and Francis 学术期刊 Journal of Sustainable Cement-based Materials创刊主编, Journal of Ceramics in Modern Technologies 共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊 Cement and Concrete ResearchCement and Concrete CompositesConstruction and Building Materials、Taylor & Francis学术期刊 Journal of Structural Integrity and Maintenance、西班牙 Materiales de Construccion、《材料导报》《建筑材料学报》《重庆交通大学学报》及《中国水泥》等期刊编委。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2014年获湖南省“潇湘友谊”奖。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士(Fellow)。
引用本文:    
覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
QIN Lifang, QU Bo, SHI Caijun, ZHANG Zuhua. Effect of Ca/Si Ratio on the Formation and Characteristics of Synthetic Aluminosilicate Hydrate Gels. Materials Reports, 2020, 34(12): 12057-12063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070122  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12057
1 Shi C, Jiménez A F, Palomo A. Cement and Concrete Research,2011,41(7),750.
2 Si R, Guo S, Dai Q. Journal of the American Ceramic Society,2019,102(3),1479.
3 Yip C K, Lukey G C, Provis J L, et al. Cement and Concrete Research,2008,38(4),554.
4 Yip C K, Lukey G C, van Deventer J S J. Cement and Concrete Research,2005,35(9),1688.
5 Bernal S A, Provis J L, Rose V, et al. Cement and Concrete Composites,2011,33(1),4.
6 Buchwald A, Tatarin R, Stephan D. Journal of Materials Science,2009,44(20),5609.
7 Li N, Farzadnia N, Shi C. Cement and Concrete Research,2017,100,214.
8 Burciaga-Díaz O, Escalante-García J I. Cement and Concrete Composites,2017,84,157.
9 Shi C, Roy D. Alkali-Activated Cements and Concretes, CRC Press, Canada,2006.
10 Yip C K, Lukey G C, van Deventer J S J, et al. In: Advances in Ceramic Matrix Composites IX.USA,2003,pp.187.
11 Bernal S A, Rodríguez E D, Gutiérrez R, et al. Journal of Materials Science,2011,46(16),5477.
12 Bernal S A. Frontiers in Materials, DOI:org/10.3389/fmats.2016.00043.
13 Bernal S A, Provis J L, Rose V, et al. Journal of the American Ceramic Society,2013,96(6),1951.
14 Puertas F, Martínez-Ramírez S, Alonso S, et al. Cement and Concrete Research,2000,30(10),1625.
15 Puertas F, Fernándezjiménez A. Cement and Concrete Composites,2003,25(3),287.
16 Lloyd R R, Provis J L, van Deventer J S J. Journal of Materials Science,2009,44(2),620.
17 Lloyd R R, Provis J L, van Deventer J S J. Journal of Materials Science,2009,44(2),608.
18 García-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Cement and Concrete Research,2011,41(9),923.
19 García-Lodeiro I, Fernández-Jiménez A, Blanco M T, et al. Journal of Sol-Gel Science and Technology,2008,45(1),63.
20 García-Lodeiro I, Fernández-Jiménez A, Palomo A, et al. Journal of the American Ceramic Society,2010,93(7),1934.
21 Lahoti M, Narang P, Tan K H, et al. Ceramics International,2017,43(2017),11433.
22 Yao X, Zhang Z, Zhu H, et al. Thermochimica Acta,2009,493(1-2),49.
23 Bouguermouh K, Bouzidi N, Mahtout L, et al. Journal of Non-Crystalline Solids,2017,463,128.
24 Kapeluszna E, Kotwica Ł, Róycka A, et al. Construction and Building Materials,2017,155,643.
25 Yang T, Xiao Y, Zhang Z, et al. Journal of Sustainable Cement-Based Materials,2012,1(4),167.
26 Zhang M, Zhao M, Zhang G, et al. Cement and Concrete Composites,2017,78,21.
27 Fernández-Jiménez A, Palomo A. Microporous and Mesoporous Materials,2005,86(1-3),207.
28 Dakhane A, Madavarapu S B, Marzke R, et al. Applied Spectroscopy,2017,71(8),1795.
29 Zhang Z, Wang H, Provis J L, et al. Thermochimica Acta,2012,539,23.
30 Lecomte I, Henrist C, Liégeois M, et al. Journal of the European Ceramic Society,2006,26(16),3789.
31 Zhang M, Yang C, Yang K, et al. Journal of Hazardous Materials,2017,321,281.
32 Zhang Z, Provis J L, Wang H. Thermochimica Acta,2013,565(12),163.
33 García-Lodeiro I, Fernández-Jiménez A, Macphee D E, et al. Transportation Research Record: Journal of the Transportation Research Board,2018,2142(1),52.
34 Clausi M, Fernández-Jiménez A, Palomo A, et al. Construction and Building Materials,2018,172,212.
35 Luo X C, Wang C A. Journal of the Chinese Ceramic Society,2015,43(12),1800(in Chinese).
罗新春,汪长安.硅酸盐学报,2015,43(12),1800.
36 Jin M T, Liao M Y, Zheng Z D, et al. Journal of Chemical Engineering of Chinese Universities,2017,31(1),211(in Chinese).
金漫彤,廖梦运,郑子丹,等.高校化学工程学报,2017,31(1),211.
37 Da Costa D L, Da Costa Farias R M, Braga A N S, et al. Materials Science Forum,2015,820,497.
38 Zhu Z G, Wang C A, Gao L. Journal of the Chinese Ceramic Society,2013,41(9),1175(in Chinese).
朱国振,汪长安,高莉.硅酸盐学报,2013,41(9),1175.
39 He Y, Zheng X, Lü L, et al. Journal of Wuhan University of Technology-Materials Science Edition,2018,33(3),619.
40 Yang N R, Yue W H. Handbook of spectra analysis of inorganic nonmetal materials, Wuhan University of Technolgy Press, China,2000(in Chinese).
杨南如,岳文海.无机非金属材料图谱手册,武汉工业大学出版社,2000.
41 Li S, Peng X Q, Gou J, et al. Materials Reports B:Research Papers,2018,32(5),1711(in Chinese).
李三,彭小芹,苟菁,等.材料导报:研究篇,2018,32(5),1711.
[1] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[2] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[3] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[4] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[5] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[6] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[7] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[10] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[11] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[12] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[13] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[14] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[15] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed