Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10041-10045    https://doi.org/10.11896/cldb.19040181
  无机非金属及其复合材料 |
原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响
董金美1,2, 肖学英1,2, 李颖1,2, 文静1,2, 郑卫新1,2,3, 常成功1,2, 余红发4, 5
1 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效重点实验室,西宁 810008
2 青海省盐湖资源化学重点实验室,西宁 810008
3 中国科学院大学,北京 100049
4 南京航空航天大学土木工程系,南京 210016
5 青海大学土木工程学院,西宁 810016
Influences of Raw Materials Mass Ratio on Properties and Microstructure of Salt Lake Magnesium Potassium Phosphate Cement
DONG Jinmei1,2, XIAO Xueying1,2, LI Ying1,2, WEN Jing1,2, ZHENG Weixin1,2,3, CHANG Chenggong1,2, YU Hongfa4,5
1 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences,Xining 810008, China
2 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
3 University of Chinese Academy of Science, Beijing 100049, China
4 Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
5 Civil Engineering Institute, Qinghai University, Xining 810016, China
下载:  全 文 ( PDF ) ( 4269KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用青海盐湖提锂副产品含硼氧化镁(B-MgO)为原料,将其适当处理后与磷酸二氢钾反应,不掺外加剂直接制备出一种盐湖磷酸钾镁水泥(Magnesium potassium phosphate cement,MKPC)。通过测试该MKPC浆体的凝结时间、水化放热温度和硬化体的抗压强度、孔隙率,分析硬化体的物相组成和微观结构形貌,研究了不同MgO/KH2PO4(M/K)质量配比对MKPC水化硬化过程的影响规律。结果表明:M/K质量配比对 MKPC的水化放热曲线、抗压强度和孔隙率的影响显著,存在最佳M/K质量配比为1∶1~2∶1,可使MKPC在各龄期的抗压强度值均较高,3 h的最高强度值达到87.2 MPa,并使最高水化放热温度和孔隙率均保持在最佳范围;具有最佳M/K质量配比的MKPC硬化体的水化产物生成量高,晶体生长完好, 缺陷少,硬化体有较完善的孔结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董金美
肖学英
李颖
文静
郑卫新
常成功
余红发
关键词:  提锂副产品含硼氧化镁  磷酸钾镁水泥  抗压强度  物相和微观结构    
Abstract: Asalt lake magnesium potassium phosphate cement (MKPC) was prepared directly by using the by-products of extracting lithium boron magnesium oxide (B-MgO) as raw material and reaction with potassium dihydrogen phosphate after appropriate treatment without admixture. The influence law of hydration hardening process of MKPC was studied by testing the setting time, hydration heat temperature, compressive strength, porosity and analyzing the phase composition and microstructure of different MgO/KH2PO4 (M/K)mass ratio. The results indicate that M/K mass ratio has significant influence on hydration heat curve, compressive strength and porosity of MKPC. There exists an optimum M/K mass ratio of 1∶1 to 2∶1, which can make the compressive strength of MKPC higher at all curing times, the maximum strength of 3 h up to 87.2 MPa and keep the maximum hydration exothermic temperature and porosity in the optimum range. In hardened MKPC with the optimum M/K mass ratio, more hydrates are formed and grow perfectly and stably with few defects and cracks insulting in perfect microstructure.
Key words:  by-products of extracting lithium boron magnesium oxide (B-MgO)    magnesium potassium phosphate cement (MKPC)    compressive strength    phases and microstructure
                    发布日期:  2020-04-26
ZTFLH:  TU528.01  
基金资助: 青海省应用基础研究项目(2020-ZJ-746);中国科学院青年创新促进会项目(2018467;2019423)
通讯作者:  余红发,南京航空航天大学土木工程系教授,博士研究生导师。研究方向为高性能混凝土材料、结构耐久性与寿命预测。出版专著2部,发表论文100余篇,EI等收录30余篇。yuhongfa@nuaa.edu.cn   
作者简介:  董金美,中国科学院青海盐湖研究所,副研究员。2015年6月毕业于中国科学院青海盐湖研究所,获无机化学博士学位。主要从事盐湖镁资源的综合利用与镁质胶凝材料的基础研究工作。
引用本文:    
董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
DONG Jinmei, XIAO Xueying, LI Ying, WEN Jing, ZHENG Weixin, CHANG Chenggong, YU Hongfa. Influences of Raw Materials Mass Ratio on Properties and Microstructure of Salt Lake Magnesium Potassium Phosphate Cement. Materials Reports, 2020, 34(10): 10041-10045.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040181  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10041
1 Mathieu Le Rouzic, Thierry Chaussadent, Gérard Platret, et al. Cement and Concrete Research, 2017, 91(1), 117.
2 Viani A, Peréz-Estébanez M, Pollastri S, et al. Cement and Concrete Research, 2015, 79, 344.
3 Jiang H Y, Liang B, Zhang L M. Journal of Building Materials, 2001, 4 (2), 196(in Chinese).
姜洪义, 梁波, 张联盟. 建筑材料学报, 2001, 4 (2), 196.
4 Yang Q, Zhang S, Wu X. Cement and Concrete Research, 2002, 32(1), 165.
5 Ma H Y, Xu B W, Li Z J. Cement and Concrete Research, 2014, 65, 96.
6 Li J S, Xu G D, Chen Y Z, et al. Construction and Building Materials, 2014, 69, 346.
7 Wagh A S. Chemically bonded phosphate ceramics, Oxford: Elsevier Scie-nce Ltd, 2004.
8 Péra J, Ambroise J. Cement and Concrete Composites, 1998, 20(1), 31.
9 Patrick K Donahue, Matthew D Aro. Construction and Building Mate-rials, 2010, 24(2), 215.
10 Ribeiro D V, Agnelli J A M, Morelli M R. Materials Research, 2013, 16(5), 1113.
11 Yang J M, Qian C X, Zhang Q H, et al. Journal of Southeast University (Natural Science Edition), 2010, 40(2), 373(in Chinese).
杨建明, 钱春香, 张青行, 等. 东南大学学报(自然科学版), 2010, 40(2), 373.
12 Soudée E, Péra J. Cement and Concrete Research, 2002, 32(1), 153.
13 Liu Y H, Deng T L. World Sci-Tech R & D, 2006, 28(5), 69(in Chinese).
刘元会, 邓天龙. 世界科技研究与发展, 2006, 28(5), 69.
14 Zhu Z H, Zhu C L, Wen X M, et al. Journal of Salt Lake Research, 2008, 16(3), 64(in Chinese).
祝增虎, 朱朝梁, 温现明, 等. 盐湖研究, 2008, 16(3), 64.
15 Ma P H. Progress in Chemistry, 2009, 21(11), 2349(in Chinese).
马培华. 化学进展, 2009, 21(11), 2349.
16 Tan Y S, Yu H F, Li Y, et al. Ceramics International, 2014, 40 (8, Part B), 13543.
17 Tan Y S, Yu H F, Li Y, et al. Journal of the Chinese Ceramic Society, 2014, 42(11), 1362(in Chinese).
谭永山, 余红发, 李颖, 等. 硅酸盐学报, 2014, 42 (11), 1362.
18 Dong J M, Yu H F, Xiao X Y, et al. Journal of Wuhan University of Technology Materials Science, 2016, 31(3), 671.
19 Weill D, Bradik J. US patent, 4756762, 1988-06-12.
20 Wu Z W, Lian H Z. High performance concrete, China Railway Press, China, 1999(in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999.
[1] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[2] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[3] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[4] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[5] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[6] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[7] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[8] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[9] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[10] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[11] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[12] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[13] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[14] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[15] 刘 娜,姜自超,汪宏涛,戴丰乐. 磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析[J]. 《材料导报》期刊社, 2017, 31(24): 45-49.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed