Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2046-2051    https://doi.org/10.11896/cldb.18110164
  无机非金属及其复合材料 |
高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究
申嘉荣, 徐千军
清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
Characteristics of Pore Structure Change and Compressive Strength Reduction of Concrete Under Elevated Temperatures
SHEN Jiarong, XU Qianjun
State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China
下载:  全 文 ( PDF ) ( 1936KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土内部的孔隙结构会显著影响其力学性能。本工作的主要目的是建立高温下孔隙结构变化和抗压强度的对应关系。将标准养护12个月的混凝土在不同温度(40 ℃、105 ℃、150 ℃、200 ℃和250 ℃)下干燥至恒重,并测定其抗压强度与孔隙结构。混凝土的孔隙结构通过压汞法(MIP)和氮吸附结果定量描述。结果表明:随着温度的升高,混凝土的孔隙率不断增大,孔隙结构逐渐被破坏。同时,混凝土的抗压强度随温度的升高逐渐降低。混凝土抗压强度与孔隙率的关系同Schiller提出的抗压强度-孔隙率方程符合较好,相关系数达到了0.994。因此,高温条件下,可通过Schi-ller方程定量反映混凝土抗压强度的变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申嘉荣
徐千军
关键词:  高温  孔隙结构  抗压强度  压汞法(MIP)  氮吸附    
Abstract: The pore structure of concrete exert critical impact on its mechanical properties. In this work, we aimed to describe the correspondence between the compressive strength and the pore structure of concrete. Concrete specimens undergoing standard curing in water for 12 months were dried at diverse temperatures (40 ℃, 105 ℃, 150 ℃, 200 ℃ and 250 ℃) until their weight maintained unchanged. Then, the effects of temperature on concrete pore structure and compressive strength were investigated. Compressive strength tests were carried out to characterize the mechanical properties of the concrete specimens. The pore structure were quantitatively characterized by mercury intrusion porosimetry (MIP) and N2 adsorption. The results implied that the temperature rise leaded to the ever-increasing porosity and gradual damage of the pore structure, while the compressive strength of concrete specimen declined as the temperature rose. The relationship between compressive strength and porosity is in good accordance with the strength-porosity Logarithmic relation proposed by Schiller, showing a correlation coefficient as high as 0.994. It can be concluded that Schiller function is capable of describing the variation of compressive strength under elevated temperature quantitatively.
Key words:  elevated temperature    pore structure    compressive strength    mercury intrusion porosimetry (MIP)    nitrogen adsorption
出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TV331  
基金资助: 国家重点研发计划课题资助(2017YFC0804602);国家自然科学基金(51839007;51879141)水沙科学与水利水电工程国家重点实验室自主科研课题(2019-KY-03)
通讯作者:  qxu@mail.tsinghua.edu.cn   
作者简介:  申嘉荣,清华大学水利工程系博士研究生。本科毕业于四川大学。主要从事混凝土材料干燥过程中力学性能的研究;徐千军,清华大学水利工程系教授。本科毕业于上海交通大学,并分别在四川大学和清华大学获得工学硕士和博士学位。主要从事地下工程和混凝土材料研究。
引用本文:    
申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
SHEN Jiarong, XU Qianjun. Characteristics of Pore Structure Change and Compressive Strength Reduction of Concrete Under Elevated Temperatures. Materials Reports, 2020, 34(2): 2046-2051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110164  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2046
1 Ashar H G, Bandyopadhyay R, Cook R A, et al. Code requirements for nuclear safety related concrete structures (ACI 349-01) and commentary (ACI 349R-01), ACI standard, America, 2001.2 ACI-ASME Joint Committee. ASME Boiler and Pressure Vessel Code. Section III-Division 2 and ACI Standard, America, 2001.3 Maruyama I, Sasano H, Nishioka Y, et al. Cement & Concrete Research, 2014, 66,48.4 Gallé C. Cement & Concrete Research, 2001, 31(10),1467.5 Janotka I, Nürnbergerová T. Nuclear Engineering & Design, 2005, 235(17),2019.6 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(1),155.7 Ozturk A U, Baradan B. Computational Materials Science, 2008, 43(4),974.8 Matusinovic' T, Šipušic' J, Vrbos N. Cement & Concrete Research, 2003, 33(11),1801.9 Janotka I, Nürnbergerová T. Nuclear Engineering & Design, 2005, 235(17),2019.10 Lion M, Skoczylas F, Lafhaj Z, et al. Cement & Concrete Research, 2005, 35(10),1937.11 Yuan C F, Gao D Y. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2014, 42(4),122(in Chinese).元成方, 高丹盈. 华中科技大学学报(自然科学版), 2014, 42(4),122.12 Wu Z W, Lian H Z. High performance concrete, China Railway Publi-shing House, China, 1999(in Chinese).吴中伟,廉慧珍. 高性能混凝土, 中国铁道出版社, 1999.13 Mehta P K. In:Proceeding of 8th International Congress of the Chemistry of Cement. Brazil, 1986,pp.113.14 Venkatesh K. ISRN Civil Engineering, DOI: 10.1155/2014/468510.15 EN, 1992-1-2: design of concrete structures. Part 1-2: general rules—structural fire design, Eurocode 2, European Committee for Standardization, Belgium, 2004.16 ASCE, Structural Fire Protection. ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers, New York, USA, 1992.17 Kodur V K R, Dwaikat M M S, Dwaikat M B. ACI Materials Journal, 2008, 105 (5),517.18 Bažant Z P, Kaplan M F. Concrete at high temperatures: Material properties and mathematical models, Longman (Addison-Wesley), UK,1996.19 Visser, Maria J H. Civil Engineering & Geosciences, 1998, 44(s1),S13.20 Bažant Z P, Milan Jirásek. Solid Mechanics and Its Applications, 2018,225,1.21 Dal Pont S, Ehrlacher A. International Journal of Heat and Mass Transter, 2004, 47,135.22 Dwaikat M B, Kodur V K R. Fire Safety Journal, 2009, 44,425.23 Gawin D, Pesavento F, Schrefler B A. International Journal of Solids and Structures, 2011, 48 (13),1927.24 Yurtdas I, Peng H, Burlion N, et al. Cement & Concrete Research, 2006, 36(7),1286.25 Sugiyama T, Burlion N, Bourgeois F, et al. Cement & Concrete Compo-sites, 2005, 27(3),367.26 SL352-2006. Specification for hydraulic concrete test, 2006(in Chinese).SL352-2006. 水工混凝土试验规范, 2006.27 SY/T 5346-2005. Rock capillary pressure measurement,2005(in Chinese).SY/T 5346-2005. 岩石毛管压力曲线的测定, 2005.28 Stephen Brunauer, Emmett P H, Edward Teller. Journal of the American Chemical Society, 1938, 60(2),309.29 Yang K. Simulations of gas adsorption and chain-molecules transportation in microscaled pores of rocks and its preliminary application in petroleum geology. Ph.D. Thesis, Nanjing University, China, 2011(in Chinese).杨侃. 岩石微空隙中气体吸附、链状分子运移的计算模拟及其油气地质意义. 博士学位论文,南京大学,2011.30 Zdeněk P. Bažant, Milan Jirásek. Solid Mechanics & Applications, 2018,225, 555.31 Thomas J J, Hsieh J, Jennings H M. Advanced Cement Based Materials, 1996, 3(2), 76.32 Xin Q, Luo M F. Modern catalytic research methods, Science Press, Beijing, China,2009(in Chinese).辛勤,罗孟飞. 现代催化研究方法, 科学出版社, 2009.33 Mehta P K, Monteiro J M. Concrete: Structure, Properties, and Mate-rials, McGraw-Hill, USA, 2006.34 Gawin D, Pesavento F, Schrefler B A. International Journal of Solids and Structures, 2011, 48 (13),1927.35 Schiller K K. Mechanical properties of non-metalic brittle materials, Butterworth, London, 1958.36 Caré S. Construction & Building Materials, 2008, 22(7),1560.
[1] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[2] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[3] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[4] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[5] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[6] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[7] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[8] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[9] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[10] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[11] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[12] 张鑫, 尹航, 赵而年, 刘金辉. 高温(火灾)后Q355qNH桥梁耐候钢的力学性能试验研究[J]. 材料导报, 2023, 37(23): 22050150-6.
[13] 张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
[14] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[15] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed