Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22010212-6    https://doi.org/10.11896/cldb.22010212
  无机非金属及其复合材料 |
氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究
刘新宇1, 刘惠2, 王新杰2,*, 朱平华2, 陈春红2, 周心磊2
1 常州大学环境科学与工程学院,江苏 常州 213164
2 常州大学城市建设学院,江苏 常州 213164
Sulfuric Acid Corrosion Resistance of Graphene Oxide Modified Geopolymer Recycled Concrete
LIU Xinyu1, LIU Hui2, WANG Xinjie2,*, ZHU Pinghua2, CHEN Chunhong2, ZHOU Xinlei2
1 School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 School of Urban Construction, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 19021KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以地聚物再生混凝土为基体,将混凝土浸泡于pH=1.0的硫酸溶液中48 d,以其表观损伤、抗压强度、质量损失、中和深度作为耐硫酸性能指标,研究不同掺量的氧化石墨烯(0.01%,0.03%,0.05%,均为质量分数,下同)对混凝土抗硫酸溶蚀性能的影响。此外,通过SEM、XRD、FTIR对氧化石墨烯的改性效果进行微观分析。结果表明:掺入少量的氧化石墨烯可显著提高混凝土的抗硫酸性能,但随着掺量的增加改性效果逐渐减弱。改性后混凝土的抗压强度分别提高56.0%、17.0%、6.0%,且经硫酸溶蚀48 d后仍优于未改性混凝土。48 d后掺量为0.05%的混凝土出现最大的质量损失和中和深度,以及SEM图中较差的界面过渡区和较多松散的腐蚀产物代表其改性效果最差。综合宏观表现、XRD和FTIR分析,确定氧化石墨烯掺量为0.01%时地聚物再生混凝土具有最佳的抗硫酸溶蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘新宇
刘惠
王新杰
朱平华
陈春红
周心磊
关键词:  地聚物再生混凝土  氧化石墨烯  硫酸溶蚀  抗压强度    
Abstract: Taking geopolymer recycled concrete as matrix, the concrete was immersed in sulfuric acid solution with pH=1.0 for 48 d, and its apparent damage, compressive strength, mass loss and neutralization depth were used as sulfuric acid resistance performance indexes. The effects of different dosages of graphene oxide (0.01%, 0.03%, 0.05%) on the corrosion resistance of concrete were studied. In addition, the modification effect of graphene oxide was analyzed by SEM, XRD and FTIR. Studies have shown that the incorporation of a small amount of graphene oxide can significantly improve the sulfuric acid resistance of concrete, but the modification effect gradually weakens with the increase of the content. The compressive strength of the modified concrete increased by 56.0%, 17.0% and 6.0%, respectively, and it was still better than that of the unmodified concrete after 48 d of sulfuric acid corrosion. After 48 d, the concrete with 0.05wt% content showed the maximum mass loss and neutralization depth, and the poor interfacial transition zone and more loose corrosion products in the SEM figure, which represented the worst modification effect. Based on the macro performance, XRD and FTIR analysis, it was determined that the geopolymer recycled concrete with 0.01% graphene oxide had the best sulfuric acid corrosion resistance.
Key words:  geopolymers recycled concrete    graphene oxide    sulphuric acid erosion    compressive strength
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52008046);江苏省研究生科研实践创新计划(SJCX22_1398)
通讯作者:  *王新杰,常州大学城市建设学院副教授,硕士研究生导师。2001年7月于安徽建筑工业学院建筑工程系获工学学士学位,2006年7月于贵州大学土木与建筑工程学院获工学硕士学位,2010年6月于河海大学土木工程系获工学博士学位,目前主要从事混凝土结构耐久性领域的研究。发表论文30余篇,主持参与国家自然科学基金,省市级课题六项,发明专利三项。wangxinjie@cczu.edu.cn   
作者简介:  刘新宇,硕士研究生,本科毕业于常州大学环境科学与工程学院,主要从事环境友好型混凝土、混凝土耐久性研究。
引用本文:    
刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
LIU Xinyu, LIU Hui, WANG Xinjie, ZHU Pinghua, CHEN Chunhong, ZHOU Xinlei. Sulfuric Acid Corrosion Resistance of Graphene Oxide Modified Geopolymer Recycled Concrete. Materials Reports, 2023, 37(21): 22010212-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010212  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22010212
1 Wu M, Wang T, Wu K, Kan L. Construction and Building Materials, 2020, 239, 117813.
2 Liu H, Peng C, Dai M, et al. Surface Review and Letters, 2015, 22(6), 1550073.
3 Xie Y, Lin X, Ji T, et al. Construction and Building Materials, 2019, 228, 117071.
4 Singh N B, Middendorf B. Construction and Building Materials, 2020, 237, 117455.
5 Amran Y H M, Alyousef R, Alabduljabbar H, et al. Journal of Cleaner Production, 2020, 251, 119679.
6 Tam V W Y, Soomro M, Evangelista A C J. Construction and Building Materials, 2018, 172, 272.
7 Xiao J Z, Li A, Ding T. Journal of Southeast University (Natural Science Edition), 2016, 46(5), 1088(in Chinese).
肖建庄, 黎骜, 丁陶. 东南大学学报(自然科学版). 2016, 46(5), 1088.
8 Khan H A, Castel A, Khan M S H. Corrosion Science, 2020, 168, 108586.
9 Nuaklong P, Wongsa A, Sata V, et al. Heliyon, 2019, 5(9), e02513.
10 Devi S C, Khan R A. Construction and Building Materials, 2020, 250, 118883.
11 Guo K, Ma H H, Yang F S, et al. Journal of Building Materials, 2020, 23(1), 230(in Chinese).
郭凯, 马浩辉, 杨丰硕, 等. 建筑材料学报, 2020, 23(1), 230.
12 Liu X H, Wu Y Y, Li M S, et al. Construction and Building Materials, 2020, 247, 118544.
13 Bassuoni M T, Nehdi M L. Cement and Concrete Research, 2007, 37, 1070.
14 Wang T F, He Y C. China Concrete, 2019(7), 58(in Chinese).
王腾飞, 何怡畅. 混凝土世界, 2019(7), 58.
15 Chiranjiakumari Devi S, Ahmad Khan R. Construction and Building Materials, 2020, 250, 118883.
16 Xu G, Zhong J, Shi X. Fuel, 2018, 226, 644.
17 Mehta A, Siddique R. Construction and Building Materials, 2017, 146, 136.
18 Bakharev T. Cement and Concrete Research, 2005, 35, 658.
19 Lloyd R R, Provis J L, van Deventer J S J. Materials and Structures, 2012, 45, 1.
20 Saafi M, Tang L, Fung J, et al. Cement and Concrete Research, 2015, 67, 292.
21 Lei B, Zou J, Rao C H, et al. Journal of Building Structures, 2016, 37(S2), 103 (in Chinese).
雷斌, 邹俊, 饶春华, 等. 建筑结构学报, 2016, 37(S2), 103.
22 Liang W, Zhang G. Materials Letters, 2020, 276, 128223.
23 Somna K, Jaturapitakkul C, Kajitvichyanukul P, et al. Fuel, 2011, 90, 2118.
24 Fernando P T, Said J. Materials and Structures, 2011, 44, 487.
25 Long T, Shi X S, Wang Q Y, et al. Advanced Engineering Sciences, 2013, 45(6), 43 (in Chinese).
龙涛, 石宵爽, 王清远, 等. 四川大学学报(工程科学版), 2013, 45(6), 43.
26 Chen K, Wu D, Xia L, Cai Q, et al. Construction and Building Mate-rials, 2021, 279, 122496.
27 Bernal S A, Provis J L. Journal of the American Ceramic Society, 2014, 97, 997.
28 Provis J L, Palomo A, Shi C J. Cement and Concrete Research, 2015, 78, 110.
29 Sata V, Sathonsaowaphak A, Chindaprasirt P. Cement and Concrete Composites. 2012, 34, 700-8.
30 Liu X, Wu Y, Li M, et al. Construction and Building Materials, 2020, 247, 118544.
31 Guo X L, Shi H S, Dick W A. Cement Concrete Composite, 2010, 32, 142.
32 Li H, Liu X, Qi S Q, et al. Angewandte Chemie-International Edition, 2017, 56, 14090.
33 Allahverdi A, Skvara F. Ceramics-Silikaty. 2005, 49, 225.
[1] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[2] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[3] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[4] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[5] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[6] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[7] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[8] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[9] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[10] 陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
[11] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[12] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[13] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[14] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[15] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed