Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030249-8    https://doi.org/10.11896/cldb.22030249
  无机非金属及其复合材料 |
掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响
陈汝琪1,2,3, 张祖华1,2,3,4,*, 史才军1,2,3
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南大学土木工程学院,湖南省绿色与先进土木工程材料国际创新合作中心,长沙 410082
3 湖南大学建筑安全与节能教育部重点实验室,长沙 410082
4 同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Effects of Blending Waste Ceramic Powder in Alkali Activated Slag on Early Reaction, Strength of Hardened Products and Shrinkage Property
CHEN Ruqi1,2,3, ZHANG Zuhua1,2,3,4,*, SHI Caijun1,2,3
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
3 Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China
4 Key Laboratory of Advanced Building Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 22823KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发矿渣(Alkali activated slag—AAS)水泥具有强度发展快、胶结性能好的特点,但大收缩和高成本限制了其工程应用。本研究探索了废陶瓷粉作为新的原材料,其用量对AAS体系早期反应、硬化体的抗压强度和收缩性能以及微观结构的影响。研究表明,废陶瓷粉因活性较低,其掺入会延缓AAS凝结时间;碱激发100%废陶瓷粉甚至不能在常温下正常凝结硬化。掺10%~50%废陶瓷粉的碱激发净浆强度7 d前发展慢,但到90 d时抗压强度提高且超过碱激发100%矿渣的抗压强度;更高掺量会导致碱激发净浆及砂浆强度的显著下降。AAS中掺废陶瓷粉可有效降低砂浆的自收缩,但会不同程度地增加干缩,掺量低于20%时对碱激发水泥砂浆的干缩影响小。综合考虑净浆和砂浆的各项性质,认为废陶瓷粉在AAS中具有应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈汝琪
张祖华
史才军
关键词:  碱激发水泥  废陶瓷粉  矿渣  抗压强度  收缩性能    
Abstract: Alkali activated slag cement (AAS) has the characteristics of rapid strength development and good binding property, however, its large shrinkage and high cost hinder the industrial application. To explore the feasibility of using waste ceramic powder as new raw materials, this study investigated the effects of its blending amount on the early reaction, compressive strength of hardened products, shrinkage and microstructure properties. Results show that the incorporation of ceramic powder can delay the setting time of paste due to its lower reactivity than slag. Alkali activated 100% ceramic powder cannot set and harden at room temperature as normal cement does. The compressive strengths of AAS pastes with 10%—50% ceramic powder develop slowly before 7 d, but increase progressively and become comparable to alkali activated 100% slag at 90 d. However, strengths of AAS pastes and mortars both decrease significantly when more than 50% ceramic powder is used. As expected, blending ceramic powder can effectively reduce autogenous shrinkage of AAS mortar but will increase drying shrinkage, while blending a small amount (less than 20%) has little negative effect on drying shrinkage though. Given the comprehensive properties of the tested pastes and mortars, waste ceramic powder can be regarded as valuable raw materials.
Key words:  alkali activated cement    waste ceramic powder    slag    compressive strength    shrinkage property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ172.4  
基金资助: 国家自然科学基金(U2001225;51878263)
通讯作者:  *张祖华,同济大学材料科学与工程学院教授,博士研究生导师。2006 年本科毕业于南京工业大学无机非金属专业,2010年和2014年分别于南京工业大学和南昆士兰大学获得博士学位。2016年和2017年分别获澳大利亚优青项目(DECRA)和国家青年人才计划。研究领域为低碳胶凝材料、固废安全利用和先进功能材料,发表期刊论文180余篇,授权发明专利14项,出版专著《碱激发混凝土技术与工程应用》(2022)。zhangzuhua@tongji.edu.cn   
作者简介:  陈汝琪,2019年6月毕业于哈尔滨工程大学,获工学学士学位,2022年获湖南大学土木工程学硕士学位,从事固废资源化和低碳胶凝材料研究。
引用本文:    
陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
CHEN Ruqi, ZHANG Zuhua, SHI Caijun. Effects of Blending Waste Ceramic Powder in Alkali Activated Slag on Early Reaction, Strength of Hardened Products and Shrinkage Property. Materials Reports, 2023, 37(17): 22030249-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030249  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030249
1 Kong X Z. China Cement, 2021(6), 8 (in Chinese).
孔祥忠. 中国水泥, 2021(6), 8.
2 Provis J L, Bernal S A. Annual Review of Materials Research, 2014, 44(1), 299.
3 Zhang J, Shi C J, Zhang Z H, et al. Construction and Building Materials, 2017, 152, 598.
4 Krivenko P, Drochytka R, Gelevera A, et al. Cement and Concrete Composites, 2014, 45, 157.
5 Melo N A A, Cincotto M A, Repette W. Cement and Concrete Research, 2008, 38(4), 565.
6 Provis J L, Palomo A, Shi C J, et al. Cement and Concrete Research, 2015, 78, 110.
7 Alsaif A. Construction and Building Materials, 2021, 300, 124009.
8 Wang S H, Wang C, Wang Y Q, et al. Journal of Ceramics, 2019, 40(6), 710 (in Chinese).
王少华, 汪超, 汪永清, 等. 陶瓷学报, 2019, 40(6), 710.
9 Pacheco-Torgal F, Jalali S. Construction and Building Materials, 2010, 24(5), 832.
10 Mohammadhosseini H, Lim N H A S, Tahir M M, et al. Construction and Building Materials, 2019, 212, 607.
11 Atkuri V K, Rao G R. IOP Conference Series:Materials Science and Engineering, 2021, 1025(1), 012017.
12 Li L, Liu W F, You Q, et al. Journal of Cleaner Production, 2020, 259(C), 120853.
13 Siddique S, Chaudhary S, Shrivastava S, et al. Journal of Cleaner Production, 2019, 210, 246.
14 Sun Z Q, Cui H, An H, et al. Construction and Building Materials, 2013, 49, 281.
15 Shah K W, Huseien G F. Construction and Building Materials, 2020, 251(C), 119088.
16 Medina C, Juan A. , Frías M, et al. Materiales de Construccion, 2011, 61(304), 533.
17 Alves A V, Vieira T, Brito J D, et al. Construction and Building Materials, 2014, 64, 103.
18 Reig L, Tashima M, Soriano L, et al. Waste and Biomass Valorization, 2013, 4(4), 729.
19 Reig L, Sanz M A, Borrachero M V, et al. Ceramics International, 2017, 43(16), 13622.
20 Mahmoodi O, Siad H, Lachemi M, et al. Construction and Building Materials, 2020, 258.
21 Hwang C L, Yehualaw M D, Vo D H, et al. Construction and Building Materials, 2019, 218, 519.
22 Rakhimova N R, Rakhimov R Z. Design. Construction and Building Materials, 2015, 85, 324.
23 Zhang G Y, Ahn Y H, Lin R S, et al. Polymers, 2021, 13(16), 2817.
24 Huseien G F, Sam A R M, Shah K W, et al. Construction and Building Materials, 2019, 214, 355.
25 El-Dieb A S, Kanaan D M. Sustainable Materials and Technologies, 2018, 17, e00063.
26 Aydin S, Baradan B. Composites Part B:Engineering, 2014, 57, 166.
27 Liu Y W, Zhang Z H, Shi C J, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1689 (in Chinese).
刘翼玮, 张祖华, 史才军, 等. 硅酸盐学报, 2020, 48(11), 1689.
28 Lu C F, Zhang Z H, Shi C J, et al. Cement and Concrete Composites, 2021, 121, 104061.
29 Azevedo G S A, Kurt S. Construction and Building Materials, 2021, 269, 121306.
30 Li Z M, Nedeljković M, Chen B, et al. Cement and Concrete Research, 2019, 122, 30.
31 Fang G, Bahrami H, Zhang M, et al. Construction and Building Materials, 2018, 171, 377.
32 Ye H, Radlińska A. Cement and Concrete Research, 2017, 101, 131.
33 Xue L, Zhang Z H, Liu H F, et al. Construction and Building Materials, 2022, 316, 126068.
34 Ye H, Radlińska A. Research C. Cement and Concrete Research, 2016, 88, 126.
35 Samson G, Cyr M, Gao X X. Construction and Building Materials, 2017, 144, 50.
36 Jiang D B, Li X G, Lv Y, et al. Cement and Concrete Research, 2021, 149, 106581.
37 Zhang S, Keulen A, Arbi K, et al. Cement and Concrete Research, 2017, 102, 29.
38 Gao X, Yu Q L, Brouwers H J H. Construction and Building Materials, 2015, 80, 105.
39 Abdel-Gawwad H A, Mohammed M S, Alomayri T, et al. Construction and Building Materials, 2019, 228(C), 11682.
[1] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[2] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[3] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[4] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[5] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[6] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[7] 龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
[8] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[9] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[10] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[11] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[12] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[13] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[14] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[15] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed