Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21060242-9    https://doi.org/10.11896/cldb.21060242
  高分子与聚合物基复合材料 |
地聚物的耐高温性能研究进展
宋天诣1, 曲星宇1, 潘竹2,3,*
1 北京工业大学城市建设学部,北京 100124
2 河北工业大学土木与交通学院,天津 300401
3 天津市装配式建筑与智能建造重点实验室,天津 300401
Research Progress on High Temperature Performance of Geopolymers
SONG Tianyi1, QU Xingyu1, PAN Zhu2,3,*
1 Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
2 School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
3 Tianjin Key Laboratory of Prefabricated Buildings and Smart Construction, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 3798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物是一种使用工业固废作为原料的新型绿色环保建筑材料。固废中含有的铝硅酸盐玻璃体在高碱性条件下经缩聚反应可形成无定型态的硅铝网状类沸石立体结构,从而使地聚物具有类陶瓷的特性,改善其耐高温性能。近年来,地聚物的耐高温性能成为绿色建材领域研究热点。
地聚物混凝土是一种多相复合材料,其原料来源多样且配制过程中需要控制的参数较为复杂,这些因素都导致地聚物混凝土在高温下(后)抗压强度变化的多样性。近年来,研究者们开展了大量试验和理论分析工作,发现影响地聚物混凝土高温下(后)抗压强度的三个主要影响因素是:(1)晶相转变;(2)微观结构变化;(3)地聚物和骨料的位移不相容性。地聚物混凝土在高温下(后)的抗压强度最终取决于三个主要因素中占主导的因素和混凝土延性。
本文着重探讨了硅铝原子比、碱溶液类型和骨料对地聚物混凝土高温下(后)抗压强度的影响规律,结合三种影响因素分析了地聚物混凝土的抗压强度劣化机理,同时对地聚物的热工性能和地聚物混凝土结构的耐火性能进行了综述。最后,对地聚物材料耐高温性能的未来研究前景进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋天诣
曲星宇
潘竹
关键词:  地聚物  地聚物混凝土结构  高温  热工性能  抗压强度    
Abstract: Geopolymers are a kind of emerging cementitious materials that provide an environmentally alternative to ordinary Portland cement (OPC) based concrete. Compared with OPC concrete, the benefits of geopolymers are mainly based on their ability to bring high volume ratio of industrial wastes into construction products. Generated via the dissolution and polycondensation reaction of aluminosilicate vitreous in industrial waste under high alkaline conditions, geopolymers possess the zeolite-like network structures in which aluminum and silica tetrahedrally interlink alternately by sharing all the oxygen atoms. The formation of this three-dimensional structure leads to ceramic-like properties. Therefore, geopolymers are generally considered to provide excellent fire resistance, and research in this field has been attracting increasing interest in recent years.
Geopolymeric concrete is a multiphase composite material, and its composition has wide variations. The orthotropic nature of the constituent materials results in the variation of high-temperature performance. Owing to the considerable research efforts, it has been recognized that there are mainly three factors which can affect compressive strength of geopolymeric concrete (exposed to high temperature): (Ⅰ) phase transition; (Ⅱ) microstructure changes; (Ⅲ) thermal incompatibility of geopolymer matrix and aggregates. The compressive strength of geopolymeric concrete under (or experienced) high temperatures depends on the dominant factor and the material's ductility.
In this paper, the influence of Si/Al ratio, type of alkali solution and aggregates on the compressive strength of geopolymeric concrete under (and after experiencing) high temperatures are discussed. Combined with three factors, the compressive strength degradation mechanisms of geopolymeric concrete is analyzed. The paper also summarizes the thermal performance of geopolymers and the fire resistance of geopolymeric concrete structures. Finally, the future research prospect of high temperature performance of geopolymers is discussed.
Key words:  geopolymer    geopolymeric concrete structure    high temperature    thermal property    compressive strength
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U20A20313;51778018, 52178444);河北省自然科学基金重点项目(E2019202484)
通讯作者:  *潘竹,河北工业大学土木与交通学院教授、博士研究生导师。2012年6月在澳大利亚蒙纳什大学(Monash University)土木工程系取得结构工程专业博士学位,2014年7月至2018年12月在澳大利亚西悉尼大学(Western Sydney University)进行博士后研究工作。长期从事高性能绿色胶凝材料的形成机理和耐高温性能研究,主持澳大利亚国家级项目2项、国家自然科学基金联合基金重点项目1项(在研)。在Cement and Concrete Research、Cement and Concrete Compo-sites、Journal of Cleaner Production、Materials and Design、Applied Energy和Composites Part B: Engineering等SCI期刊上发表论文27篇。其中两篇为该领域ESI高被引文章。所发表成果被SCI论文引用超过1 400次,H因子17。zhu.pan@hebut.edu.cn   
作者简介:  宋天诣,北京工业大学城市建设学部副教授、博士研究生导师。2011年1月博士毕业于清华大学土木工程系结构工程专业,2016年入选北京市第十二批海外高层次人才“海聚工程青年项目”,目前兼任中国钢结构协会防火与防腐分会理事、中国土木工程学会工程防火技术分会理事、中国建筑学会抗震防灾分会结构抗火专业委员会委员。主要从事钢-混凝土组合结构和新型混凝土材料耐火性能等方面的研究。已发表中英文学术论文50余篇,出版专著1部,参编国家标准1部、建筑工业行业或地方标准7部。
引用本文:    
宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
SONG Tianyi, QU Xingyu, PAN Zhu. Research Progress on High Temperature Performance of Geopolymers. Materials Reports, 2023, 37(8): 21060242-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060242  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21060242
1 Davidovits J. Journal of Thermal Analysis, 1991, 37(8), 1633.
2 Brabosa V F F, Mackenzie K J D. Materials Research Bulletin, 2003, 38, 319.
3 Dombrowski K, Buchwald A, Weil M. Journal of Materials Science, 2007, 42(9), 3033.
4 Kupwade-Patil K, Soto F, Kunjumon A, et al.Computers and Structures, 2013, 122, 164.
5 Davidovits J. In: Geopolymer 2002 Conference. Melbourne, 2002, pp. 1.
6 Davidovits J. Geopolymer chemistry & application, National Defense Industry Press, China, 2011 (in Chinese).
约瑟夫·戴维德维斯. 地聚物化学及应用, 国防工业出版社, 2011.
7 Pan Z, Tao Z, Cao Y F, et al.Cement and Concrete Composite, 2018, 86, 9.
8 Chithambaram S J, Kumar S, Prasad M M. Construction and Building Materials, 2019, 213, 100.
9 Choi Y C, Park B.Journal of Materials Research and Technology, 2020, 9(4), 7655.
10 Temuujin J, Williams R P, Van Riessen A.Journal of Materials Proce-ssing Technology, 2009, 209(12-13), 5276.
11 Ryu G S, Lee Y B, Koh K T, et al.Construction and Building Materials, 2013, 47, 409.
12 Tang L, Huang Q, Wang Q Y, et al.Materials Reports, 2015, 29(6), 129 (in Chinese).
唐灵, 黄琪, 王清远, 等. 材料导报, 2015, 29(6), 129.
13 Ghafoor M T, Khan Q S, Qazi A U, et al.Construction and Building Materials, 2021, 273, 121752.
14 Dai J X, Shi X S, Wang Q Y, et al.Materials Reports, 2021, 35(9), 9077 (in Chinese).
代金芯, 石宵爽, 王清远, 等. 材料导报, 2021, 35(9), 9077.
15 Diederichs U, Jumppanen U M, Penttala V. Department of Structural Engineering, Helsinki University of Technology, Espoo, 1989, pp. 76.
16 Provis J L, Yong C J, Duxson P, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336(1-3), 57.
17 Kohout J, Koutník P. Materials, 2020, 13(10), 2395.
18 Duxson P, Lukey G C, Van Deventer J S J. Journal of Materials Science, 2007, 42(9), 3044.
19 Kong D L Y, Sanjayan J G. Cement and Concrete Research, 2010, 40(2), 334.
20 Rickard W D A, Temuujin J, Van Riessen A. Journal of Non-Crystalline Solids, 2012, 358(15), 1830.
21 Abdulkareem O A, Al Bakri A M M, Kamarudin H, et al. Key Enginee-ring Materials, 2014, 594-595, 427.
22 Yang Z, Mocadlo R, Zhao M, et al. Construction and Building Materials, 2019, 221, 308.
23 Kamseu E, Ceron B, Tobias H, et al. Journal of Thermal Analysis and Calorimetry, 2012, 108(3), 1189.
24 Snell C, Tempest B, Gentry T. Journal of Architectural Engineering, 2017, 23(2), 04017002.
25 Sakkas K, Nomikos P, Sofianos A, et al. Fire and Materials, 2015, 39(3), 259.
26 Campbell-Allen D, Thorne C P. Magazine of Concrete Research, 1963, 15(43), 39.
27 Guo Z H, Shi X D. Bebaviour of reinforced concrete at elevated temperature and its calculation, Tsinghua University Press, China, 2002 (in Chinese).
过镇海, 时旭东. 钢筋混凝土的高温性能及其计算, 清华大学出版社, 2002.
28 Pan Z, Tao Z, Cao Y F, et al. Materials and Structures, 2018, 51(4), 108.
29 Zhao R, Sanjayan J G.Magazine of Concrete Research, 2011, 63(3), 163.
30 Van Deventer J S J, Provis J L, Duxson P.Minerals Engineering, 2012, 29, 89.
31 Fernández-Jiménez A, Palomo A, Pastor J Y, et al. Journal of the American Ceramic Society, 2008, 91(10), 3308.
32 Pan Z, Sanjayan J G. Cement and Concrete Composites, 2010, 32(9), 657.
33 Pan Z,Sanjayan J G, Collins F. Cement and Concrete Research, 2014, 56, 182.
34 Fernández-Jiménez A, Pastor J Y, Martín A, et al. Journal of the American Ceramic Society, 2010, 93(10), 3411.
35 Martin A, Pastor J Y, Palomo A, et al. Construction and Building Materials, 2015, 93, 1188.
36 Rahier H, Van Mele B, Wastiels J. Journal of Materials Science, 1996, 31(1), 80.
37 Cao J S. Bulletin of the Chinese Ceramic Society, 2017, 36(4), 1452 (in Chinese).
曹集舒. 硅酸盐通报, 2017, 36(4), 1452.
38 Kong D L Y,Sanjayan J G, Sagoe-Crentsil K. Cement and Concrete Research, 2007, 37(12), 1583.
39 Krivenko P V, Kovalchuk G Y. Journal of Materials Science, 2007, 42(9), 2944.
40 Rickard W D A, Williams R, Temuujin J, et al. Materials Science and Engineering A, 2011, 528(9), 3390.
41 Davidovits J.Ceramic Transactions, 1993, 37(1), 165.
42 De Jong B H W S, Brown J G E. Geochimica et Cosmochimica Acta, 1980, 44(3), 491.
43 Thokchom S, Mandal K K, Ghosh S. Arabian Journal of Science and Engineering, 2012, 37(4), 977.
44 Kong D L Y,Sanjayan J G, Sagoe-Crentsil K. Journal of Materials Science, 2008, 43(3), 824.
45 Lahoti M, Wong K K, Yang E H, et al.Ceramics International, 2018, 44(5), 5726.
46 Hou Y F, Wang D M, Zhou W J, et al.Fly Ash Comprehensive Utilization, 2008(3), 26 (in Chinese).
侯云芬, 王栋民, 周文娟, 等. 粉煤灰综合利用, 2008(3), 26.
47 Hosan A, Haque S, Shaikh F. Journal of Building Engineering, 2016, 8, 123.
48 Lahoti M, Wong K K, Tan K H, et al. Materials and Design, 2018, 154, 8.
49 Li W, Guo Z H. Journal of Building Structures, 1993, 14(1), 8 (in Chinese).
李卫, 过镇海. 建筑结构学报, 1993, 14(1), 8.
50 EN 1992-1-2: 2004. Eurocode 2: Design of concrete structures. Part 1-2: general rules- structural fire design, Brussels (Belgium): European Committee for Standardization, 2004.
51 Junaid M T, Khennane A, Kayali O. MATEC Web of Conferences, 2014, 11, 01003.
52 Junaid M T, Kayali O, Khennane A.Materials and Structures, 2017, 50(1), 50.
53 Shaikh F U A, Vimonsatit V. Fire and Materials, 2015, 39(2), 174.
54 Rickard W D A, Gluth G J G, Pistol K. Cement and Concrete Research, 2016, 80, 33.
55 Zhang H Y, Kodur V, Qi S L, et al. Construction and Building Mate-rials, 2014, 55, 38.
56 Valencia S W G,Mejía de G R. Construction and Building Materials, 2017, 154, 229.
57 Hassan A, Arif M, Shariq M. Arabian Journal for Science and Enginee-ring, 2020, 45(5), 3843.
58 Abdulkareem O A, Mustafa Al B A M, Kamarudin H, et al. Construction and Building Materials, 2014, 50, 377.
59 Tanyildizi H, Yonar Y. Construction and Building Materials, 2016, 126, 381.
60 Jiang X, Zhang Y, Xiao R, et al. Journal of Cleaner Production, 2020, 270, 122500.
61 Bakharev T.Cement and Concrete Research, 2006, 36(6), 1134.
62 Pan Z, Sanjayan J G, Rangan B V. Journal of Materials Science, 2009, 44(7), 1873.
63 Škvára F, Jílek T, Kopecký L. Ceramics-Silikaty, 2005, 49(3), 195.
64 Hussin M W, Bhutta M A R, Azreen M, et al. Materials and Structures, 2015, 48(3), 709.
65 Jin M T, Liao M Y, Zheng Z D, et al. Journal of Chemical Engineering of Chinese Universities, 2017, 31(1), 211 (in Chinese).
金漫彤, 廖梦运, 郑子丹, 等. 高校化学工程学报, 2017, 31(1), 211.
66 Sivasakthi M, Jeyalakshmi R, Rajamane N P, et al. Journal of Non-Crystalline Solids, 2018, 499, 117.
67 Qiu X M,Liu Y D, Yan C J, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2281 (in Chinese).
仇秀梅, 刘亚东, 严春杰, 等. 硅酸盐通报, 2019, 38(7), 2281.
68 Fang Y, Kayali O. Construction and Building Materials, 2013, 39, 89.
69 Junaid M T, Khennane A, Kayali O, et al. Cement and Concrete Research, 2014, 60, 24.
70 He F, Deng Z G. Bulletin of the Chinese Ceramic Society, 2003(1), 26 (in Chinese).
何峰, 邓志国. 硅酸盐通报, 2003(1), 26.
71 Aziz I H, Al Bakri A M M, Heah C Y, et al. Advances in Cement Research, 2020, 32(10), 465.
72 Wang H, Li H, Yan F. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268(1-3), 1.
73 Zhang H Y, Kodur V, Wu B, et al.Journal of Materials in Civil Enginee-ring, 2016, 28(2), 04015092.
74 Zheng J R, Liu L N. Journal of Zhengzhou University (Engineering Science), 2007, 28(3), 5 (in Chinese).
郑娟荣, 刘丽娜. 郑州大学学报 (工学版), 2007, 28(3), 5.
75 Abdulkareem O A,Al B A M M, Kamarudin H, et al. Advanced Materials Research, 2013, 795, 201.
76 Revathi T, Jeyalakshmi R, Rajamane N P. Applied Surface Science, 2018, 449, 322.
77 Pan Z, Tao Z, Cao Y F, et al. Cement and Concrete Composites, 2018, 86, 9.
78 Duxson P, Lukey G C, Van Deventer J S J. Journal of Non-Crystalline Solids, 2007, 353(22-23), 2186.
79 Zhang Y, Yan D, Han N, et al. Journal of Materials in Civil Enginee-ring, 2020, 32(12), 04020369.
80 Kong D L Y, Sanjayan J G. Cement and Concrete Composites, 2008, 30(10), 986.
81 Andiç-Çakir Ö, Hizal S. Construction and Building Materials, 2012, 34, 575.
82 Zhang H Y, Qi S L, Cao L.Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1), 11 (in Chinese).
张海燕, 祁术亮, 曹亮. 防灾减灾工程学报, 2015, 35(1), 11.
83 Yan R Z. Influence of high temperature on physical and mechanical pro-perties of C40 high performance concrete. Ph.D. Thesis, Taiyuan University of Technology, China, 2015 (in Chinese).
阎蕊珍. 高温对C40高性能混凝土物理力学性能的影响. 博士学位论文, 太原理工大学, 2015.
84 Kuenzel C, Grover L M, Vandeperre L, et al. Journal of the European Ceramic Society, 2013, 33(2), 251.
85 Ranjbar N, Mehrali M, Alengaram U J, et al. Construction and Building Materials, 2014, 65, 114.
86 Zhang H Y, Kodur V, Wu B, et al.Construction and Building Materials, 2016, 109, 17.
87 Ameri F, Shoaei P, Zareei S A, et al. Construction and Building Mate-rials, 2019, 222(1), 49.
88 Guerrieri M, Sanjayan J G. Fire and Materials, 2010, 34(4), 163.
89 Zhang H Y, Kodur V, Wu B, et al. Construction and Building Materials, 2018, 163, 277.
90 Cheng H G, Liu G C, Zhong T, et al.Industrial Construction, 2019, 49(2), 107 (in Chinese).
陈辉国, 刘国粹, 钟庭, 等. 工业建筑, 2019, 49(2), 107.
91 Paswan R, Rahman M R, Singh S K, et al. Journal of Materials in Civil Engineering, 2020, 32(7), 04020167.
92 Jiang X, Xiao R, Zhang M, et al. Construction and Building Materials, 2020, 254, 119267.
93 Mathew G, Joseph B. Journal of Building Engineering, 2018, 15, 311.
94 Sarker P K, Mcbeath S.Construction and Building Materials, 2015, 90, 91.
95 Espinos A, Romero M L, Hospitaler A, et al.Structures, 2015, 4, 105.
96 Tao Z, Cao Y F, Pan Z, et al. International Journal of High-Rise Buil-dings, 2018, 7(4), 327.
[1] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[2] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[3] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[4] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[5] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[6] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[7] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[8] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[9] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[10] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[11] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[12] 王以霖, 谭毅, 崔传勇, 游小刚, 赵龙海, 崔弘阳, 李鹏廷, 李晓娜. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算[J]. 材料导报, 2023, 37(1): 21080061-6.
[13] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[14] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[15] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed