Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21060190-5    https://doi.org/10.11896/cldb.21060190
  高分子与聚合物基复合材料 |
耐400 ℃高温氰酸酯导电胶的制备与性能
孙怡坤1, 朱召贤2, 王涛2, 牛波1,*, 龙东辉1,*
1 华东理工大学化工学院,上海 200237
2 中国电子科技集团公司第五十八研究所,江苏 无锡 214035
Preparation and Properties of Cyanate Ester Conductive Adhesive Resistant to 400 ℃
SUN Yikun1, ZHU Zhaoxian2, WANG Tao2, NIU Bo1,*, LONG Donghui1,*
1 School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2 The 58th Research Institute of China Electronics Technology Group Co., Ltd., Wuxi 214035, Jiangsu, China
下载:  全 文 ( PDF ) ( 12851KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决芯片密封封装时管壳高温焊接导致的芯片脱粘、封装内产气等问题,本工作首次以耐高温氰酸酯树脂为基体、高纯片状Ag粉为填料,制备了耐400 ℃高温的氰酸酯导电胶。微观结构分析结果表明,片状Ag颗粒在氰酸酯基体中随机分布,形成了较好的导热导电网络,且去除Ag粉表面有机物可以有效抑制氰酸酯导电胶粘接固化后气泡和裂纹的产生。热性能分析表明氰酸酯导电胶具有优异的热稳定性,其在300 ℃下的失重率仅有0.06%,400 ℃下的失重率小于0.3%,远低于目前公开报道的导电胶在相同温度下的失重率。氰酸酯导电胶的玻璃化温度(Tg)为240 ℃,低于和高于Tg时的热膨胀系数分别为51.2×10-6/℃和162.2×10-6/℃,具有较宽的使用温度范围。环境实验和力学性能测试表明,氰酸酯导电胶具有优异的粘接性能和环境适应性,330 ℃固化后的导电胶在环境测试后平均芯片剪切强度高达18.4 MPa。本工作制备的氰酸酯导电胶具备优异的综合性能,对电子封装用高温导电胶的研发和应用具有重要的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙怡坤
朱召贤
王涛
牛波
龙东辉
关键词:  耐高温导电胶  氰酸酯  粘接性能  热物理性能  导电性能    
Abstract: To restrain the chip debonding and gas production in package caused by high temperature welding during the chip sealing, cyanate ester conductive adhesive(CECA)with high temperature resistance of 400 ℃ was prepared using high purity flake silver powder as filler and cyanate ester resin as matrix. The microstructure analysis results show that Ag flakes were randomly distributed in the cyanate ester matrix, forming a good thermal and electric conductive network, and removing the organic matter on the surface of Ag powders can effectively inhibit the generation of bubbles and cracks, after the CECA was bonded and cured. Thermogravimetric analysis results show that the weight loss rate of the conductive adhesive is only 0.06% at 300 ℃ and less than 0.3% at 400 ℃, which are far lower than the current weight loss rate of conductive adhesive at the same temperature. The results of thermal performance test show that the Tg of conductive adhesive is 240 ℃, and the CTE is 51.2×10-6/℃ below Tg and 162.2×10-6/ ℃ above Tg. What's more, the environmental test and mechanical properties test show that the adhesive has strong adhesive strength and environmental adaptability. When the curing temperature is 330 ℃, the average chip shear strength is up to 18.4 MPa. In conclusion, the CECA prepared in this paper has excellent comprehensive properties, which provides an important reference for the development and application of high temperature conductive adhesive.
Key words:  high temperature resistant conductive adhesive    cyanate    bonding property    thermal physical property    electrical conductivity
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TQ437  
基金资助: 国家自然科学基金(22078100;52102098)
通讯作者:  *牛波,2016年本科毕业于武汉理工大学,2021年博士毕业于哈尔滨工业大学,目前在华东理工大学从事博士后研究工作,主要从事复合材料研究。发表论文30余篇,包括Scripta Materialia、Journal of the European Ceramic Society、ACS Applied Materials & Interfaces等。niubo@ecust.edu.cn
龙东辉,华东理工大学化工学院教授、博士研究生导师。2009年博士毕业于华东理工大学,2011年于日本九州大学先导材料研究所博士后出站后到华东理工大学工作至今。目前主要从事航天先进树脂基复合材料研究。发表论文130余篇,包括Angew. Chem.、Energy Environ. Sci.、Adv. Funct. Mater.、ACS Nano等。longdh@ecust.edu.cn   
作者简介:  孙怡坤,2016年于辽宁石油化工大学环境工程专业本科毕业,2020年毕业于华东理工大学,获得工学硕士学位。现为华东理工大学化工学院科研助理,在龙东辉教授的指导下进行研究。目前主要研究领域为电子封装材料。
引用本文:    
孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
SUN Yikun, ZHU Zhaoxian, WANG Tao, NIU Bo, LONG Donghui. Preparation and Properties of Cyanate Ester Conductive Adhesive Resistant to 400 ℃. Materials Reports, 2023, 37(5): 21060190-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060190  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21060190
1 Sun Z, Chen F, Cheng N, et al. New Journal of Chemistry, 2021, 45(22), 10089.
2 Zhang W, Yao J J, Zhan K, et al. Science & Technology Review, 2018, 36 (10), 56(in Chinese).
章炜, 姚建吉, 詹科, 等. 科技导报, 2018, 36(10), 56.
3 Zhang S D, Fu R L, Zeng J, et al. Chinese Adhesive, 2009, 18(7), 34(in Chinese).
张绍东, 傅仁利, 曾俊, 等. 中国胶粘剂, 2009, 18(7), 34.
4 Derakhshankhah H, Mohammad-Rezaei R, Massoumi B, et al. Journal of Materials Science:Materials in Electronics, 2020, 31(14), 10947.
5 Zhou Z F, Liu J F, Li Z C. Journal of Liaoning Technical University, 2002(5), 646(in Chinese).
周忠福, 刘敬福, 李智超. 辽宁工程技术大学学报, 2002(5), 646.
6 Gao H. Preparation, structure and properties of high performance silver-filled epoxy electrically conductive adhesives. Ph. D. Thesis, South China University of Technology, China, 2011(in Chinese).
高宏. 高性能银填充环氧导电胶的制备、结构与性能. 博士学位论文, 华南理工大学, 2011.
7 Zhang B, Dang Z M. Acta Materiae Compositae Sinica, 2011, 28(5), 34(in Chinese).
张博, 党智敏. 复合材料学报, 2011, 28(5), 34.
8 Xue W. Study on anisiotropic conductive adhesive based on modified expoxy resin. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
薛伟. 基于改性环氧树脂各向异性导电胶的研究. 博士学位论文, 哈尔滨工业大学, 2020.
9 Guo D, Hu M R, Li L C. Electronics & Packaging, 2020, 20(9), 16(in Chinese).
郭丹, 胡明荣, 李良超. 电子与封装, 2020, 20(9), 16.
10 Wang C B, Chen Y, Men C L, et al. Journal of Functional Materials, 2021, 52(3), 3021(in Chinese).
王传博, 陈亚, 门传玲, 等. 功能材料, 2021, 52(3), 3021.
11 Ma A L, Xiao X Y, Liu B Y, et al. China Adhesives, 2020, 29(1), 37(in Chinese).
马艾丽, 肖翔云, 刘柏言, 等. 中国胶粘剂, 2020, 29(1), 37.
12 Liang Y, Li J P, Li S H, et al. Precious Metals, 2015, 36(4), 21(in Chinese).
梁云, 李俊鹏, 李世鸿, 等. 贵金属, 2015, 36(4), 21.
13 Mao J L. Preparation of modified epoxy based electrically conductive adhesives with polyimide and study on curing reaction kinetics of the system. Ph. D. Thesis, Donghua University, China, 2011(in Chinese).
毛蒋莉. 聚酰亚胺改性环氧导电胶的研制及其固化动力学研究. 博士学位论文, 东华大学, 2011.
14 Li E. Electrically conductive adhesives based on epoxy resins modified by polyimide powder with carboxyl group. Ph. D. Thesis, Donghua University, China, 2012(in Chinese).
李恩. 含羧基聚酰亚胺环氧导电胶粘剂. 博士学位论文, 东华大学, 2012.
15 Huang Y E, Chen L, Li L D, et al. Chinese Adhesive, 2021, 30(1), 48(in Chinese).
黄裕娥, 陈琳, 李连地, 等. 中国胶粘剂, 2021, 30(1), 48.
16 Deng W B, Zhu R, Li J, et al. China Plastics Industry, 2018, 46(8), 1(in Chinese).
邓卫斌, 朱瑞, 李军, 等. 塑料工业, 2018, 46(8), 1.
17 Zong M J Z, Wu W, Zhang X W, et al. Journal of East China University of Science and Technology, 2020, 46(3), 385(in Chinese).
宗孟静子, 吴唯, 张雪薇, 等. 华东理工大学学报(自然科学版), 2020, 46(3), 385.
18 Wang Y X, Zhang G E, Wang X M, et al. New Chemical Materials, 2019, 47(9), 70(in Chinese).
王月祥, 张贵恩, 王晓明, 等. 化工新型材料, 2019, 47(9), 70.
19 Yang Z, Zhao J D, Yang X K, et al. Silicone Material, 2021, 35(1), 50(in Chinese).
杨震, 赵景铎, 杨潇珂, 等. 有机硅材料, 2021, 35(1), 50.
20 Siow K. Die-attach materials for high temperature applications in microelectronics packaging, Springer Nature Switzerland AG, Germany, 2018.
21 Hamerton I. Chemistry and technology of cyanate ester resins, Springer Netherlands, Germany, 1994.
22 Tang D C. Thermosetting Resin, 2019, 34(6), 61(in Chinese).
唐多昌. 热固性树脂, 2019, 34(6), 61.
23 Gao F, Bai G, Xiao W, et al. Composites Science and Engineering, 2019(5), 83(in Chinese).
高锋, 白刚, 肖伟, 等. 复合材料科学与工程, 2019(5), 83.
24 Zhang Y C, Jia C C, Jia P. Acta Materiae Compositae Sinica, 2019, 36(3), 602(in Chinese).
张有茶, 贾成厂, 贾鹏. 复合材料学报, 2019, 36(3), 602.
25 Chen J. In:The 15th China High-end SMT Academic Conference. Chongqing, China, 2021, pp. 221(in Chinese).
陈杰. 第十五届2021中国高端SMT学术会议论文集. 重庆, 2021, pp.221.
26 Zhu Z X, Zhou Y, Wang T, et al. Electronic Product Reliability and Environmental, 2022, 40(3), 42(in Chinese).
朱召贤, 周悦, 王涛, 等. 电子产品可靠性与环境试验, 2022, 40(3), 42.
27 Su Y, Dai Y Q, Liao B, et al. Chinese Adhesive, 2018, 27(10), 52(in Chinese).
苏瑜, 戴永强, 廖兵, 等. 中国胶粘剂, 2018, 27(10), 52.
28 Novák I, Krupa I, Chodák I. European Polymer Journal, 2003, 39(3), 585.
[1] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[2] 赵臻璐, 刘洪新, 张鑫, 孙天峰, 黎昱, 陈维强, 顾轶卓, 梁春祖. 国产M40J级石墨纤维与氰酸酯树脂的界面性能[J]. 材料导报, 2022, 36(17): 21050130-5.
[3] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[4] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[5] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[6] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[7] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[8] 柳和生, 段翔宇, 赖家美, 黄兴元, 陈乐乐. 超声振荡对多壁碳纳米管/VARTM用环氧树脂复合材料导电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(3): 112-115.
[9] 孙东健,杨建校,马国芝,周娩红,刘洪波. 中间相沥青基石墨纤维表面化学镀铜及性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 129-132.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed