Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 705-708    https://doi.org/10.11896/cldb.201904027
  高分子与聚合物基复合材料 |
利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂
翟乐,吉海峰,姚艳梅,瞿雄伟
河北工业大学高分子科学与工程研究所,天津 300130
Toughening Cyanate Ester Resin by Using Poly(n-butyl acrylate)@Polymethyl Methacrylate Core-Shell Structured Polymer Particles
ZHAI Le, JI Haifeng, YAO Yanmei, QU Xiongwei
Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 2976KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用半连续种子乳液聚合方法制备了以聚丙烯酸正丁酯(PBA)为核、聚甲基丙烯酸甲酯(PMMA)为壳、粒径为346 nm的核/壳型改性剂(Poly(BA)/Poly(MMA)),简称PBMMA,改变两种单体的质量比分别为:60/40、65/35、75/25、70/30、80/20,以及调整添加量研究其对氰酸酯树脂(CE)的增韧改性效果。结果表明,该种子乳液聚合反应具有很高的瞬时转化率(>90%)和总转化率(>95%),且改变核/壳质量比对乳液聚合反应过程没有影响。经透射电镜表征发现,PBMMA乳液有明显的核/壳结构。对CE/PBMMA共混物进行了力学性能测试,用扫描电镜观察其断裂表面形貌,并利用动态力学分析研究了CE/PBMMA共混物的分子运动。当核/壳质量比为60/40、添加量为5%(质量分数)时,增韧剂PBMMA在基体中均匀分散并出现脆性-韧性转变点。CE/PBMMA共混物的抗冲击强度是纯CE树脂的3.78倍,力学性能与断面SEM观察结果一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟乐
吉海峰
姚艳梅
瞿雄伟
关键词:  氰酸酯树脂  丙烯酸酯聚合物  核壳结构  种子乳液聚合  增韧    
Abstract: Aseries of core-shell structured poly(n-butyl acrylate)@poly(methyl methacrylate) (named PBMMA) impact modifiers differing in core/shell weight ratio (60/40,65/35,75/25,70/30, to 80/20) with an average particle size of 346 nm were prepared by seed emulsion polymerization. The toughening effects of the core-shell structured particles with various compositions and under different adding amounts toward cyanate ester (CE) resin were investigated. It was found that the polymerization had a very high instantaneous conversion (90wt%) and overall conversion (95wt%). The PBMMA latexes had an obvious core-shell structure confirmed by transmission electron microscope, and the weight ratio of core/shell had inconspicuous influence on the seed-emulsion polymerization process. The mechanical properties of the PBMMA/CE blends were evaluated, and scanning electron microscope (SEM) was used to observe the fractured surface morphology. We also conducted the dynamic mechanical analysis by which the molecular movement of the CE/PBMMA blends could be revealed. The results showed that PBMMA can be dispersed well in the matrix, and the brittle-ductile transition point emerges under an appropriate value of the core-shell weight ratio (60/40) and the adding amount of the core-shell structured particles (5wt%). As a result, the PBMMA/CE blend was determined to have a high impact strength which is 3.78 times of pure CE resin. The mechanical properties agreed well with the SEM observation.
Key words:  cyanate ester resin    acrylate ester    core-shell structure    seed emulsion polymerization    toughening
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TQ 323.9  
基金资助: 河北省自然科学基金(E2016202036);天津市科技计划项目(17YFCZZC00280)
作者简介:  翟乐,女,1991年,2018年6月毕业于河北工业大学高分子化学与物理专业,获得理学硕士学位。研究方向为多相多组分聚合物体系。瞿雄伟,河北工业大学化工学院教授、博士研究生导师。1985年6月本科毕业于北京航空学院聚合物复合材料专业,1988年6月在成都科技大学获得高分子材料硕士学位,1999年6月在北京化工大学材料学专业获得博士学位,2004—2005年在英国曼彻斯特大学材料科学中心作访问学者。获国家发明专利23项,河北省技术发明一等奖1项,河北省省管优秀专家。主要研究兴趣在于核壳结构聚丙烯酸酯的可控合成及其在极性基础树脂中的增韧改性,以及增强和导热功能高分子材料的研究。
引用本文:    
翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
ZHAI Le, JI Haifeng, YAO Yanmei, QU Xiongwei. Toughening Cyanate Ester Resin by Using Poly(n-butyl acrylate)@Polymethyl Methacrylate Core-Shell Structured Polymer Particles. Materials Reports, 2019, 33(4): 705-708.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904027  或          http://www.mater-rep.com/CN/Y2019/V33/I4/705
1 Laskoski M, Dominguez D D, Keller T M. Journal of Polymer Science: Part A: Polymer Chemistry,2006,44(15),4559.2 Zhang B F, Wang Z G, Zhang X. Polymer,2009,50(3),817.3 Rau A V, Srinivasan S A, MeGrath J E, et al. Polymer Composites,1998,19(2),166.4 Karad S K, Attwood D, Jones F R. Composite: Part A,2002,33(12),1665.5 Nair C P R, Mathew D, Ninan K N. Advances in Polymer Science, 2001,155(1),1.6 Fang H Q, Liang G Z, Wang J L, et al. Material Review,2004,18(9),47(in Chinese).房红强,梁国正,王结良,等.材料导报,2004,18(9),47.7 Gong D J, Wei B R, Liu C H. Journal of Insulating Materials,2009,42(5),52(in Chinese).宫大军,魏伯荣,柳丛辉.绝缘材料,2009,42(5),52.8 Zhang X Y, Gu A J, Liang G Z, et al. Journal of Polymer Research,2011,18(6),1441.9 Liu J F, Zhang D W, Yang H L, et al. Thermosetting Resin,2008,23(2),11(in Chinese).刘敬峰,张德文,杨慧丽,等.热固性树脂,2008,23(2),11.10 Iijima T, Kaise T, Tomoi M. Journal of Applied Polymer Science,2003,88(1),1.11 Zhong X Y, Bao J W, Chen X B, et al. Jouranl of Materials Enginee-ring,2006(1),38(in Chinese).钟翔屿,包建文,陈祥宝,等.材料工程,2006(1),38.12 Huang F P, Li C L, Zhu B L, et al. Fiber Reinforced Plastics/Compo-sites,2015(5),27(in Chinese).黄凤萍,李春雷,祝宝林,等.玻璃钢/复合材料,2015(5),27.13 Yang P C, Pickelman D M, Woo E P. In: 35th International SAMPE Symposium. Anaheim, California,1990,pp.1131.14 Yang J Y, Liang G Z, Tang Y S, et al. Chinese Journal of Materials Research,2005,19(6),625(in Chinese).杨洁颖,梁国正,唐玉生,等.材料研究学报,2005,19(6),625.15 Fang Z P, Wang J G, Gu A J. Polymer Engineering & Science,2006,46(5),670.16 Lyu S H, Lv Q Q, Yang Q R. China Plastics,2005,19(3),28(in Chinese).吕生华,吕庆强,杨权荣.中国塑料,2005,19(3),28.17 Fu N, Li G H, Zhang Q X, et al. RSC Advances,2014,4(3),1067.18 Dong Q, Alojz I. Polymer,2015,66(1),16.19 Fan H, Wang J L. Polymer Materials Science and Engineering,2001,17(1),121(in Chinese).范宏,王建黎.高分子材料科学与工程,2001,17(1),121.20 Wang Q J, Huang Y, Xiong J, et al. Fiber Reinforced Plastics/Composites 2003(4),50(in Chinese).王琦洁,黄英,熊佳,等.玻璃钢/复合材料,2003(4),50.
[1] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[2] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[3] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[4] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[5] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[6] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[7] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[8] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[9] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[10] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[11] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[12] 贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏. CFRP层合板抗分层损伤技术研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2288-2294.
[13] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[14] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[15] 王凤彪, 张嘉易, 丁茹, 李银玉, 李丽丽, 陈松. 超声辅助微弧氧化Ti-13Nb-13Zr合金制备仿生涂层及其断裂力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 46-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed