Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 20-26    https://doi.org/10.11896/j.issn.1005-023X.2017.017.004
  材料综述 |
质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述
蔡超, 陈亚男, 傅凯林, 潘牧
武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Review on the Decay Mechanism of Pt/C and Pt-alloy Catalysts in PEM Fuel Cells
CAI Chao, CHEN Yanan, FU Kailin, PAN Mu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1656KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 成本和耐久性依然是制约质子交换膜燃料电池商业化发展的两大瓶颈。首先综述了质子交换膜燃料电池阴极Pt/C催化剂在实际工作条件下的降解情况,并给出了可能的降解机制。结果表明,Pt/C催化剂在实际工作条件下,尤其是在汽车应用中是不稳定的,通常无法用作燃料电池阴极催化剂。而Pt合金催化剂因具有优异的氧还原催化性能和相对较好的耐久性,被认为有望解决成本和耐久性这两大难题,因此在质子交换膜燃料电池中日益得到重视和应用。但如何改善合金催化剂的耐久性依然是一个棘手的问题,文章最后详细综述了PtxCoy合金催化剂可能的衰退机理,以及可在一定程度上提高Pt合金催化剂耐久性的Pt单层结构和Pt核壳结构,这对催化剂的合成和设计具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡超
陈亚男
傅凯林
潘牧
关键词:  质子交换膜燃料电池  Pt/C催化剂  Pt合金催化剂  耐久性  Pt单层结构  Pt核壳结构    
Abstract: Cost and durability of PEM fuel cells are still two bottlenecks that impede the commercialization of PEM fuel cells. Initially, the degradation of the Pt/C catalyst for the proton exchange membrane fuel cell cathode under practical working conditions is reviewed and possible degradation mechanisms are given. The results indicate that the Pt/C catalyst is not stable under practical working conditions, especially in automotive applications, and cannot meet the practical requirements of cathode materials for PEM fuel cells. Pt alloy catalysts are expected to solve the problems of cost and durability due to their excellent oxygen reduction catalytic properties and relatively good durability. Therefore, they have been paid more and more attention and applied in PEM fuel cells. However, the durability of the alloy catalyst is still a difficult problem. At the end of this paper, the possible mechanism of the PtxCoy alloy catalysts degradation is reviewed and it is found that Pt monolayer structure and Pt skeleton structure can improve the durability of Pt alloy catalysts, which has a directive significance for the synthesis and design of catalysts.
Key words:  PEM fuel cells    Pt/C catalyst    Pt-alloy catalyst    durability    Pt monolayer structure    Pt skeleton structure
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TM911.46  
通讯作者:  潘牧:通讯作者,男,1965年生,教授,博士研究生导师,主要从事新能源材料及燃料电池汽车研究 E-mail:panmu@whut.edu.cn   
作者简介:  蔡超:男,1990年生,硕士研究生,主要从事质子交换膜燃料电池耐久性研究 E-mail:materialsphch@163.com
引用本文:    
蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
CAI Chao, CHEN Yanan, FU Kailin, PAN Mu. Review on the Decay Mechanism of Pt/C and Pt-alloy Catalysts in PEM Fuel Cells. Materials Reports, 2017, 31(17): 20-26.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.004  或          http://www.mater-rep.com/CN/Y2017/V31/I17/20
1 Barbir F. PEM fuel cells: Theory and practice [M]. Boston: Academic Press,2013.
2 Detlef Stolten. Fuel cells: Data, facts, and figures [M]. Hoboken: John Wiley & Sons,2016.
3 Dimitrios Papageorgopoulos. Fuel Cells Program [OL]. https://www.hydrogen.energy.gov/pdfs/review14/fc000_papageorgopoulos_2014_o.pdf.
4 Colón-Mercado H R, Popov B N. Stability of platinum based alloy cathode catalysts in PEM fuel cells [J]. J Power Sources,2006, 155(2):253.
5 Tang H, Peikang S, Jiang S P, et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells[J]. J Power Sources, 2007,170(1):85.
6 Zihrul P, Hartung I, Kirsch S, et al. Voltage cycling Induced losses in electrochemically active surface area and in H2/air-performance of PEM fuel cells[J]. J Electrochem Soc,2016,163(6):F492.
7 Castanheira L, Silva W O, Lima F H B, et al. Carbon corrosion in proton-exchange membrane fuel cells: Effect of the carbon structure, the degradation protocol, and the gas atmosphere[J]. ACS Catal,2015,5(4):2184.
8 Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. J Power Sources,2007,171(2):558.
9 Shao-Horn Y, Sheng W C, Chen S, et al. Instability of supported platinum nanoparticles in low-temperature fuel cells[J]. Topics Catal,2007,46(3-4):285.
10 Felix N Büchi,et al. Polymer electrolyte fuel cell durability [M]. New York: Springer New York, 2009.
11 Bett J A S, Kinoshita K, Stonehart P. Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment [J]. J Catal,1976,41(1):124.
12 Blurton K F, Kunz H R, Rutt D R. Surface area loss of platinum supported on graphite[J]. Electrochim Acta,1978,23(3):183.
13 Aragane J, Murahashi T, Odaka T. Change of Pt distribution in the active components of phosphoric acid fuel cell[J]. J Electrochem Soc,1988,135(4):844.
14 Wilson M S, Garzon F H, Sickafus K E, et al. Surface area loss of supported platinum in polymer electrolyte fuel cells[J]. J Electrochem Soc,1993,140(10):2872.
15 Gruver G A, Pascoe R F, Kunz H R. Surface area loss of platinum supported on carbon in phosphoric acid electrolyte[J]. J Electrochem Soc,1980,127(6):1219.
16 Voorhees P W. The theory of Ostwald ripening [J]. J Statistical Phys,1985,38(1-2):231.
17 Virkar A V, Zhou Y. Mechanism of catalyst degradation in proton exchange membrane fuel cells [J]. J Electrochem Soc,2007, 154(6):B540.
18 Honji A, Mori T, Tamura K, et al. Agglomeration of platinum particles supported on carbon in phosphoric acid[J]. J Electrochem Soc,1988,135(2):355.
19 Bindra P, Clouser S J, Yeager E. Platinum dissolution in concentra-ted phosphoric acid [J]. J Electrochem Soc,1979, 126(9):1631.
20 Xie J, Wood D L, More K L, et al. Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions[J]. J Electrochem Soc,2005,152(5): A1011.
21 Xie J, Wood D L, Wayne D M, et al. Durability of PEFCs at high humidity conditions [J]. J Electrochem Soc,2005,152(1):A104.
22 Garzon F H, Davey J, Borup R. Fuel cell catalyst particle size growth characterized by X-ray scattering methods [J]. ECS Trans,2006,1(8):153.
23 Mench M, et al.Polymer electrolyte fuel cell degradation [M].Boston: Academic Press,2011.
24 Burlatsky S F, Gummalla M, Atrazhev V V, et al. The dynamics of platinum precipitation in an ion exchange membrane [J]. J Electrochem Soc,2011,158(3):B322.
25 Wang X, Kumar R, Myers D J. Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells [J]. Electrochem Solid-State Lett,2006,9(5):A225.
26 Bi W, Gray G E, Fuller T F. PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte[J]. Electrochem Solid-State Lett, 2007,10(5):B101.
27 Guilminot E, Corcella A, Chatenet M, et al. Membrane and active layer degradation upon PEMFC steady-state operation I. Platinum dissolution and redistribution within the MEA [J]. J Electrochem Soc,2007,154(11):B1106.
28 Ferreira P J, Shao-Horn Y, Morgan D, et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation[J]. J Electrochem Soc,2005,152(11):A2256.
29 Ferreira P J, Shao-Horn Y. Formation mechanism of Pt single-crystal nanoparticles in proton exchange membrane fuel cells[J]. Electrochem Solid-State Lett,2007,10(3):B60.
30 Yasuda K, Taniguchi A, Akita T, et al. Characteristics of a platinum black catalyst layer with regard to platinum dissolution pheno-mena in a membrane electrode assembly[J]. J Electrochem Soc,2006,153(8):A1599.
31 Bi W, Gray G E, Fuller T F. PEM fuel cell Pt/C dissolution and deposition in Nafion electrolyte [J]. Electrochem Solid-State Lett,2007,10(5):B101.
32 Zhang J, Litteer B A, Gu W, et al. Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs[J]. J Electrochem Soc,2007,154(10):B1006.
33 Yasuda K, Taniguchi A, Akita T, et al. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling[J]. Phys Chem Chem Phys, 2006,8(6):746.
34 Fuller T, Gray G. Carbon corrosion induced by partial hydrogen coverage [J]. ECS Transa,2006,1(8):345.
35 Roen L M, Paik C H, Jarvi T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes [J]. Electrochem Solid-State Lett,2004,7(1):A19.
36 Mathias M F, Makharia R, Gasteiger H A, et al. Two fuel cell cars in every garage [J]. Electrochem Soc Interface,2005,14(3):24.
37 Reiser C A, Bregoli L, Patterson T W, et al. A reverse-current decay mechanism for fuel cells [J]. Electrochem Solid-State Lett, 2005,8(6),DOI:10.114911.1896466.
38 Satija R, Jacobson D L, Arif M, et al. In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells [J]. J Power Sources,2004,129(2):238.
39 Reiser C A, Bregoli L, Patterson T W, et al. A reverse-current decay mechanism for fuel cells [J]. Electrochem Solid-State Lett,2005,8(6):A273.
40 Stuve E M, Gastaiger H A. PEMFC short course[C]//210th Mee-ting of The Electrochemical Society. Cancun, Mexico,2006.
41 Borup R L, Papadias D D, Mukundan R, et al. Carbon corrosion in PEM fuel cells during drive cycle operation[J]. ECS Trans, 2015,69(17):1029.
42 Thompsett D. Pt alloys as oxygen reduction catalysts [M]// Handbook of Fuel Cells.John Wiley Sons,2010.
43 Thompsett D. Pt alloys as oxygen reduction catalysts [M]// Handbook of Fuel Cells. John Wiley Sons,2003.
44 Makharia R, Kocha S, Yu P, et al. Durable polymer electrolyte membrane (PEM) fuel cell materials: requirements and benchmarking methodologies[C]//Catalyst Catalyst Support Durability Pemfcs,2006,33:1165.
45 Gummalla M, Ball S C, Condit D A, et al. Effect of particle size and operating conditions on Pt3Co PEMFC cathode catalyst durability[J]. Catalysts,2015,5(2):926.
46 Ohyagi S, Sasaki T. Durability of a PEMFC Pt-Co cathode catalyst layer during voltage cycling tests under supersaturated humidity conditions [J]. Electrochim Acta,2013,102:336.
47 Debbie Myers.Electrocatalysts and Supports [OL]. https://www.hydrogen.energy.gov/pdfs/review16/fc136_borup_2016_o.pdf.
48 Kaya S, Viswanathan V, Friebel D, et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode.[J]. Nat Commun,2013,4(4):345.
49 Yu P, Pemberton M, Plasse P. PtCo/C cathode catalyst for improved durability in PEMFCs [J]. J Power Sources, 2005,144(1):11.
50 Cai Y, Kongkanand A, Gu W, et al. Effects of cobalt cation on low Pt-loaded PEM fuel cell performance [J]. ECS Trans,2015,69(17):1047.
51 Antolini E, Salgado J R C, Gonzalez E R. The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt-Co catalyst [J]. J Power Sources,2006, 160(2):957.
52 Macauley N, Mukundan R, Langlois D A, et al. Durability of PtCo/C cathode catalyst layers subjected to accelerated stress testing [C]//PRiME 2016/230th ECS Meeting.Honolulu,2016.
53 Maillard F, Dubau L, Durst J, et al. Durability of Pt 3 Co/C nano-particles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface [J]. Electrochem Commun,2010,12(9):1161.
54 Dubau L, Durst J, Maillard F, et al. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect [J]. Electrochim Acta,2011,56(28):10658.
55 Stamenkovic V R, Mun B S, Mayrhofer K J, et al. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. J Am Chem Soc,2006, 128(27):8813.
56 Oezaslan M, Hasché F, Strasser P. Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes [J]. J Phys Chem Lett,2013,4(19):3273.
57 Wang C, Chi M, Li D, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces [J]. J Am Chem Soc,2011,133(36):14396.
58 He T. Performance and durability of Pt-Ti catalyst for oxygen electroreduction[C]// 2016/230th ECS Meetings.Honolulu, 2016.
[1] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[2] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[3] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[4] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[5] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[6] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[7] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[8] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[9] 徐晶, 王先志. 浸渍及固载法用于混凝土微生物表面处理对比研究[J]. 材料导报, 2018, 32(24): 4276-4280.
[10] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[11] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[12] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[13] 杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
[14] 张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
[15] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed