Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22100014-16    https://doi.org/10.11896/cldb.22100014
  无机非金属及其复合材料 |
渗透结晶水泥基复合材料研究综述
张立卿1,2, 余家乐1,2, 王云洋3, 韩宝国4, 陈梦成1,2, 许开成1,2,*
1 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室, 南昌 330013
2 华东交通大学土木建筑学院,南昌 330013
3 湖南文理学院土木建筑工程学院 ,湖南 常德 415000
4 大连理工大学土木工程学院, 辽宁 大连 116024
Study on Cementitious Composites with Permeable Crystalline Agent:a Review
ZHANG Liqing1,2, YU Jiale1,2, WANG Yunyang3, HAN Baoguo4, CHEN Mengcheng1,2, XU Kaicheng1,2,*
1 State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
3 School of Civil Engineering and Architecture, Hunan University of Arts and Science, Changde 415000, Hunan, China
4 School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 26619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 渗透结晶水泥基复合材料具有良好力学性能、耐久性能与自修复性能,是一种具有发展潜力的低碳建筑材料。渗透结晶剂中的活性化学物质可通过渗透和结晶反应产生晶体,具有修复水泥基复合材料裂缝的功能,在隧道、桥梁、水坝等工程上具有广阔的应用前景。本文首先介绍了渗透结晶水泥基复合材料的原材料、配比、制备与养护;其次介绍了渗透结晶剂对水泥基复合材料力学性能和耐久性能的影响;再次评价了其自修复性能与影响因素,分析了自修复产物及机理;最后,探讨了其未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立卿
余家乐
王云洋
韩宝国
陈梦成
许开成
关键词:  渗透结晶剂  水泥基复合材料  力学性能  耐久性能  自修复性能  自修复机理    
Abstract: As potential low carbon building materials, cementitious composites with permeable crystalline agent have good mechanical properties, durability and self-healing properties. Permeable crystalline agent can generate crystals by means of the permeation and crystallization of its internal active chemicals, which can fill the cracks. Thus, permeable crystalline agent has a broad application prospect in tunnels engineering, bridges engineering, dams engineering and other engineering structures. This paper first introduces the raw materials, mix proportion, preparation and curing methods of cementitious composites with permeable crystalline agent. Then, the effects of permeation crystallization agent on the mechanical and durability of cementitious composites are reviewed. Self-healing properties, products and mechanisms are summarized and analyzed. Finally, the future research direction of cementitious composites with permeable crystalline agent is discussed directions in order to promote the research and engineering applications of cementitious composites with permeable crystalline agent.
Key words:  permeable crystalline agent    cementitious composites    mechanical property    durability    self-healing property    self-healing mechanism
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU57  
基金资助: 国家自然科学基金地区项目(51968021);江西省科技厅面上项目(20224BAB204067);江西省交通运输厅科技项目(2022H0017);华东交通大学轨道交通基础设施性能监测与保障国家重点实验室自主课题(HJGZ2022201)
通讯作者:  *许开成,华东交通大学土木建筑学院教授、博士研究生导师。1996年华东交通大学工业与民用建筑专业本科毕业,2008年华东交通大学结构工程专业硕士毕业,2013年南昌大学固体力学专业博士毕业。目前主要研究方向为新型钢混组合结构设计关键力学技术,废弃材料在混凝土中高效资源化利用,混凝土损伤演化机理,工程结构材料安全性评价和寿命预测。发表学术论文60余篇,包括Construction and Building Materials、Journal of Cleaner Production、《复合材料学报》《哈尔滨工业大学学报》《计算力学学报》《工业建筑》等。xkcxj@ecjtu.edu.cn   
作者简介:  张立卿,华东交通大学土木建筑学院讲师、硕士研究生导师。2012年毕业于石家庄铁道大学无机非金属材料专业获工学学士学位;2018年毕业于大连理工大学材料学专业获博士学位;2018年至今于华东交通大学土木建筑学院任教。目前主要从事多功能/智能纳米混凝土与结构、绿色混凝土与结构等方面的教学和科研工作。发表期刊论文30余篇,包括Composites Part A:Applied Science and Manufacturing、Construction and Building Materials、Journal of Cleaner Production、Archives of Civil and Mechanical Engineering、Journal of Intelligent Material Systems and Structures、《复合材料学报》等。
引用本文:    
张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
ZHANG Liqing, YU Jiale, WANG Yunyang, HAN Baoguo, CHEN Mengcheng, XU Kaicheng. Study on Cementitious Composites with Permeable Crystalline Agent:a Review. Materials Reports, 2024, 38(13): 22100014-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100014  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22100014
1 Khaliq W, Ehsan M B. Construction and Building Materials, 2016, 102, 349.
2 Tang W C, Kardani O, Cui H Z. Construction and Building Materials, 2015, 81, 233.
3 Li V C, Herbert E. Journal of Advanced Concrete Technology, 2012, 10(6), 207.
4 Gupta S, Pang S D, Kua H W. Construction and Building Materials, 2017, 146, 419.
5 Tittelboom K V, Belie N D. Materials, 2013, 6(6), 2182.
6 Ferrara L, Krelani V, Moretti F. Smart Materials and Structures, 2016, 25(8), 84002.
7 Dong B Q, Fang G H, Wang Y S, et al. Cement and Concrete Composites, 2017, 78, 84.
8 Snoeck D, Belie N D. Journal of Materials in Civil Engineering, 2015, 04015086(1), 1.
9 Qureshi T S, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2016, 121, 629.
10 Perez G, Gaitero J J, Erkizia E, et al. Cement and Concrete Composites, 2015, 60, 55.
11 Shi D, Shi C J, Wu Z M. Materials Reports, 2021, 35(7), 7096 (in Chinese).
石达, 史才军, 吴泽媚, 等. 材料导报, 2021, 35(7), 7096.
12 Liu T F. Analysis of performance and function of composition of cementitious capillary crystalline waterproof materials. Master's Thesis, Tsinghua University, China, 2011 (in Chinese).
刘腾飞. 水泥基渗透结晶型防水材料功能及组分作用分析. 硕士学位论文, 清华大学, 2011.
13 Yang M Y, Ceng J J, Wang S N, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3542 (in Chinese).
杨敏毅, 曾俊杰, 王胜年, 等. 硅酸盐通报, 2017, 36(10), 3542.
14 Li G Y. Preparation and self-healing behavior of cementitious capillary crystalline waterproof materials. Master's Thesis, South China University of Technology, China, 2018 (in Chinese).
李广彦. 水泥基渗透结晶型防水材料制备及其自修复性能. 硕士学位论文, 华南理工大学, 2018.
15 Xie Y C. Preparation and waterproof mechanism of cement-based permeable crystallization type anti-seepage materials. Master's Thesis, North University of China, China, 2017 (in Chinese).
谢俞超. 渗透结晶型水泥基防渗材料的制备及防渗机理研究. 硕士学位论文, 中北大学, 2017.
16 Li C Z, Wang M Y, Niu Z S. Materials Reports, 2021, 35(S1), 247 (in Chinese).
李崇智, 王梦宇, 牛振山. 材料导报, 2021, 35(S1), 247.
17 Zheng K L, Yang X H, Chen R, et al. Construction and Building Materials, 2019, 214, 497.
18 Escoffres P, Desmettre C, Charron J P. Construction and Building Materials, 2018, 173, 763.
19 Wang R W, Ding Z, Zhang Y Z, et al. Journal of Building Engineering, 2023, 63, 105472.
20 Zhang Y T, Yang J C, Zhao W X, et al. New Building Materials, 2017, 44(7), 68 (in Chinese).
张艺腾, 杨进超, 赵维霞, 等. 新型建筑材料, 2017, 44(7), 68.
21 Dong W K, Li W G, Guo Y P, et al. Cement and Concrete Composites, 2022, 126, 104379.
22 Jaroenratanapirom D, Sahamitmongkol R. In:Proceedings of the 6th Annual Concrete Conference. Thailand, 2010, pp. 551.
23 He P, Yu J Y, Wan Y, et al. SSRN Electronic Journal, DOI:10. 2139/ssrn. 4035379.
24 Zhang L L. Effect of capillary crystalline reaction on the durability of cement based materials and research of its mechanism. Master's Thesis, Shihezi University, China, 2018 (in Chinese).
张淋淋. 复合渗透结晶反应对水泥基材料耐久性的影响及机理研究. 硕士学位论文, 石河子大学, 2018.
25 Jiang Z W. China Building Waterproofing, 2007(11), 10 (in Chinese).
蒋正武. 中国建筑防水, 2007(11), 10.
26 Zhang D Z. China Building Waterproofing, 2006(10), 8 (in Chinese).
张道真. 中国建筑防水, 2006(10), 8.
27 Gojević A, Ducman V, Netinger Grubeša I, et al. Materials, 2021, 14(8), 1860.
28 García-Vera V, Tenza-Abril A, Saval J, et al. Materials, 2019, 12(1), 82.
29 Zizkova N, Nevrivova L, Ledl M, et al. IOP Conference Series:Materials Science and Engineering, 2018, 385(1), 12066.
30 Zhang Y T, Zuo L, Yang J C, et al. Structural Concrete, 2019, 20(5), 1763.
31 Sisomphon K, Copuroglu O, Koenders E A B. Construction and Building Materials, 2013, 42, 217.
32 Sisomphon K, Copuroglu O, Koenders E A B. Cement and Concrete Composites, 2012, 34(4), 566.
33 Park B, Choi Y C. Construction and Building Materials, 2018, 189, 1054.
34 Weng T, Cheng A. Monatshefte für Chemie-Chemical Monthly, 2014, 145(1), 195.
35 Yodmalai D, Sahamitmongkol R, Tangtermsirikul S, et al. Magazine of Concrete Research, 2011, 63(8), 573.
36 Oliveira A, Toledo Filho R, Fairbairn E, et al. Cement and Concrete Composites, 2022, 126, 104369.
37 Jo B W, Sikandar M, Baloch Z, et al. Journal of Ceramic Processing Research, 2015, 16, 138.
38 Nasim M, Dewangan U K, Deo S V. Materials Today:Proceedings, 2020, 32, 844.
39 Wang X F, Yang Z H, Fang C, et al. Construction and Building Materials, 2020, 235, 117442.
40 Xue C H. Cement and Concrete Composites, 2022, 129, 104470.
41 Cappellesso V G, Petry N D S, Longhi M A, et al. Journal of Building Pathology and Rehabilitation, 2022, 7(1), 38.
42 Zhang Y Z, Wang R W, Ding Z S. Materials, 2022, 15(2), 440.
43 Zou X T. Preparation and performance study of cementitious capillary crystalline waterproofing coating. Master's Thesis, Anhui University of Science and Technology, China, 2016 (in Chinese).
邹小童. 水泥基渗透结晶型防水涂料的制备及性能研究. 硕士学位论文, 安徽理工大学, 2016.
44 Zheng K L. Investigation on performance of capillary crystalline slurry on seepage control and its underlying mechanisms. Ph. D. Thesis, Chang'an University, China, 2021 (in Chinese).
郑坤隆. 渗透结晶型浆液性能与防渗机理研究. 博士学位论文, 长安大学, 2021.
45 Jing Z. Study on cementitious capillary crystalline waterproofing materials. Master's Thesis, Anhui Jianzhu University, China, 2017 (in Chinese).
荆喆. 水泥基渗透结晶型防水材料研究. 硕士学位论文, 安徽建筑大学, 2017.
46 Bao W, Han D D, Ni K, et al. New Building Materials, 2011, 38(9), 79 (in Chinese).
鲍旺, 韩冬冬, 倪坤, 等. 新型建筑材料, 2011, 38(9), 79.
47 Sideris K K, Chatzopoulos A, Tassos C, et al. MATEC Web of Conferences, 2019, 289, 9003.
48 Elsalamawy M, Mohamed A R, Abosen A E. Construction and Building Materials, 2020, 230, 117056.
49 Lo Monte F, Ferrara L. Construction and Building Materials, 2021, 283, 122579.
50 Cuenca E, Tejedor A, Ferrara L. Construction and Building Materials, 2018, 179, 619.
51 Cuenca E, Ferrara L. Theoretical and Applied Fracture Mechanics, 2020, 106, 102468.
52 Hodul J, Zižková N, Borg R P. Buildings, 2020, 10(9), 146.
53 Ziegler F, Masuero A B, Pagnussat D T, et al. Materials, 2020, 13(21), 4947.
54 Wang X F, Fang C, Li D W, et al. Cement and Concrete Composites, 2018, 92, 216.
55 Thimmareddy C S R, Theja A R, Sashidhar C. Civil Engineering Journal, 2018, 4(5), 971.
56 Lauch K S, Desmettre C, Charron J P. Construction and Building Materials, 2022, 324, 126700.
57 Thimmareddy C S R, Theja A R. Ain Shams Engineering Journal, 2019, 10(1), 23.
58 Roig-Flores M, Pirritano F, Serna P, et al. Construction and Building Materials, 2016, 114, 447.
59 Al-Kheetan M J, Rahman M M, Chamberlain D A. Construction and Building Materials, 2018, 160, 644.
60 Coppola L, Coffetti D, Crotti E. Construction and Building Materials, 2018, 171, 817.
61 Calvo J L G, Moreno M S, Carballosa P, et al. Materials, 2019, 12(15), 2384.
62 Azarsa P, Gupta R, Azarsa P, et al. Materials, 2021, 14(21), 6508.
63 Azarsa P, Gupta R, Biparva A. Cement and Concrete Composites, 2019, 99, 17.
64 Alatawna A, Nahum L, Sripada R, et al. Cement and Concrete Composites, 2022, 130, 104534.
65 Sisomphon K. In:International Conference on Advances in Construction Materials through Science and Engineering. China, 2011, pp. 5.
66 Zhang C C, Lu R W, Li Y Z, et al. Cement and Concrete Composites, 2021, 124, 104256.
67 Buller A S, Abro F U R, Lee K, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
68 Xue C, Li W, Qu F, et al. Construction and Building Materials, 2020, 260, 119955.
69 Hodul J, Zižková N, Drochytka R, et al. Solid State Phenomena, 2019, 296, 27.
70 Zhang L V, Suleiman A R, Marani A, et al. In:CSCE 2021 Annual Conference. Singapore, 2021, pp. 277.
71 Azarsa P, Gupta R, Biparva A. Materials, 2020, 13(6), 1425.
72 He P, Yu J Y, Wang R Y, et al. Construction and Building Materials, 2020, 246, 118480.
73 Wang R Y, Yu J Y, Gu S J, et al. Construction and Building Materials, 2020, 236, 117598.
74 Zha Y G, Yu J Y, Wang R Y, et al. Construction and Building Materials, 2018, 190, 308.
75 Dufka Á, Zižková N, Brožovský J. Periodica Polytechnica Civil Engineering, 2020, 65(1), 344.
76 Cobos R B, Pinto F T, Moreno M S. Materials, 2021, 14(19), 5705.
77 Li D S, Chen B, Chen X H, et al. Construction and Building Materials, 2020, 247, 118521.
78 Li G X, Liu S J, Niu M D, et al. Construction & Building Materials, 2020, 239, 117818.
79 Wang X, Qiao H, Zhang Z W, et al. AIP Advances, 2021, 11(7), 75018.
80 Borg R P, Cuenca E, Brac E M G, et al. Journal of Sustainable Cement Based Materials, 2018, 7(3), 141.
81 Toader T P, Dico C, Mircea C. In:The 15th International Conference Interdisciplinarity in Engineering. Cham, 2022, pp. 150.
82 Xue C H, Li W G, Luo Z Y, et al. Cement and Concrete Research, 2021, 139, 106252.
83 Oliveira A, Dweck J, de Moraes Rego Fairbairn E, et al. Journal of Thermal Analysis and Calorimetry, 2019, 139(6), 3361.
84 Hrbek V, Petráňová V, Němeek J. Key Engineering Materials, 2016, 722, 92.
85 Park B, Choi Y C. Construction and Building Materials, 2021, 270, 121389.
86 Li X W. Research on the composition and properties of cementitious capillary crystalline waterproofing coating mixture. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
李兴旺. 水泥基渗透结晶型防水涂料的研制及性能研究. 硕士学位论文, 重庆大学, 2006.
87 Li G Q, Ke W X, Lei Z L, et al. New Building Materials, 2022, 49(7), 72 (in Chinese).
李国权, 柯伟席, 雷中梨, 等. 新型建筑材料, 2022, 49(7), 72.
88 Wu H H. Preparation of cement-based permeable crystalline waterproof coating and performance research. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2021 (in Chinese).
吴慧华. 水泥基渗透结晶型防水涂料的制备及性能研究. 硕士学位论文, 北京建筑大学, 2021.
89 Wang M Y, Li C Z, Niu Z S. Materials Reports, 2020, 34(S1), 185 (in Chinese).
王梦宇, 李崇智, 牛振山. 材料导报, 2020, 34(S1), 185.
90 Li G, Wei R R, Li X L, et al. Journal of South China University of Technology(Social Science Edition), 2014, 42(6), 102 (in Chinese).
李果, 韦蓉蓉, 李晓玲, 等. 华南理工大学学报(自然科学版), 2014, 42(6), 102.
91 Liu T F, Hu Y, Ge X. Concrete, 2011(2), 60 (in Chinese).
刘腾飞, 胡昱, 葛啸. 混凝土, 2011(2), 60.
92 Wu J H, Deng S Z, Zhang J Y, et al. Concrete, 2011(10), 85 (in Chinese).
吴建华, 邓少桢, 张加运, 等. 混凝土, 2011(10), 85.
93 Zhang L V, Suleiman A R, Nehdi M L. Construction and Building Materials, 2020, 262, 120059.
94 Liu S J. Effects of mineral admixtures on the self-healing capability of mortar incorporating crystalline additive. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020 (in Chinese).
刘声均. 矿物掺合料对含渗透结晶添加剂砂浆自愈合性能的影响研究. 硕士学位论文, 西安建筑科技大学, 2020.
95 Yao J C. Research on self-healing performance of concrete mixed with nano-modified cementitious capillary crystalline waterproofing. Master's Thesis, Jiangsu University, China, 2020 (in Chinese).
姚嘉诚. 基于纳米改性水泥基渗透结晶材料的混凝土自修复性能研究. 硕士学位论文, 江苏大学, 2020.
96 Fan X M, Fang D, Sun M Q, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(2), 339.
97 He X F, Huang W, Tang G. Spectroscopy and Spectral Analysis, 2021, 41(12), 3909 (in Chinese).
贺雄飞, 黄伟, 唐刚, 等. 光谱学与光谱分析, 2021, 41(12), 3909.
98 Roig-Flores M, Moscato S, Serna P, et al. Construction and Building Materials, 2015, 86, 1.
99 Cappellesso V G, Petry N, Dal Molin D C C, et al. Journal of Building Pathology and Rehabilitation, 2016, 1(1), 9.
100 Hu X, Xiao J, Zhang Z, et al. Journal of Building Engineering, 2022, 50, 104184.
101 Li H C, Rong H, Yang J J. Railway Engineering, 2016(7), 143 (in Chinese).
李海川, 荣辉, 杨久俊. 铁道建筑, 2016(7), 143.
102 Li H, Yu Q, Zhang K, et al. Case Studies in Construction Materials, 2023, 18, e1713.
103 Kou Y F. Preparation and properties of permeable crystalline repair materials. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
寇钰凤. 渗透结晶型修补材料制备及其性能研究. 硕士学位论文, 哈尔滨工业大学, 2018.
104 Xing J. Infiltration crystalline material preparation and study on salt-frost resistance of concrete. Master's Thesis, Shenyang Jianzhu University, China, 2016 (in Chinese).
邢进. 渗透结晶材料制备及其混凝土抗盐冻性能的研究. 硕士学位论文, 沈阳建筑大学, 2016.
105 Liu H Y. Studies on cementious capillary crystalline waterproofing materials. Master's Thesis, Xi'an University of Architecture and Technology, China, 2004 (in Chinese).
刘红叶. 水泥基渗透结晶型防水材料的研究. 硕士学位论文, 西安建筑科技大学, 2004.
106 Yu J Y, Wang G M. China Building Waterproofing, 2004(10), 13 (in Chinese).
余剑英, 王桂明. 中国建筑防水, 2004(10), 13.
107 Han X Y, Zhang X, Yang L, et al. China Building Waterproofing, 2006(8), 18 (in Chinese).
韩雪莹, 张新, 杨亮, 等. 中国建筑防水, 2006(8), 18.
108 Yang Y M, Li X W, Liu X F, et al. Journal of Zhongkai University of Agriculture and Engineering, 2019, 32(4), 34 (in Chinese).
杨永民, 李学文, 刘晓飞, 等. 仲恺农业工程学院学报, 2019, 32(4), 34.
109 Jiang Z W, Li W T, Yuan Z Z, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2014, 29(5), 938.
110 Li Y, Du X L, Yan Q Q, et al. The World of Building Materials, 2010, 31(5), 1 (in Chinese).
李悦, 杜修力, 闫茜茜, 等. 建材世界, 2010, 31(5), 1.
111 Pazderka J, Hájková E. Acta Polytechnica, 2016, 56(4), 306.
112 Li C Z, Niu Z S, Wu H H, et al. Materials Reports, 2021, 35(S1), 216 (in Chinese).
李崇智, 牛振山, 吴慧华, 等. 材料导报, 2021, 35(S1), 216.
113 Li C Z, Wu H H, Niu Z S, et al. Materials Reports, 2020, 34(S2), 1261 (in Chinese).
李崇智, 吴慧华, 牛振山, 等. 材料导报, 2020, 34(S2), 1261.
114 Guo N L, Guo R X, Lin Z W, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(4), 1107 (in Chinese).
郭宁林, 郭荣鑫, 林志伟, 等. 硅酸盐通报, 2020, 39(4), 1107.
115 Pei X F, Noël M, Green M, et al. Surface and Coatings Technology, 2017, 315, 188.
116 Niu Z S. Design and characterization on permeable crystalline concrete waterproofing agent. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2021 (in Chinese).
牛振山. 渗透结晶型混凝土防水剂的研制与性能研究. 硕士学位论文, 北京建筑大学, 2021.
117 Ling Z F, He X F, Hou S J, et al. Industrial Minerals & Processing, 2022, 51(6), 17 (in Chinese).
凌子枫, 贺雄飞, 候世珺, 等. 化工矿物与加工, 2022, 51(6), 17.
118 Hu Y, Diao L, Deng X, et al. China Concrete and Cement Products, 2018(10), 1 (in Chinese).
胡洋, 刁龙, 邓鑫, 等. 混凝土与水泥制品, 2018(10), 1.
119 Li B. Study on mechanical properties and damage mechanism of polypropylene fiber lightweight aggregate concrete after high temperature. Master's Thesis, Kunming University of Science and Technology, China, 2019 (in Chinese).
李冰. 内掺水泥基渗透结晶型防水材料混凝土自愈合性能研究. 硕士学位论文, 昆明理工大学, 2019.
120 Liu C, Wang Y F, He Y Z, et al. Shanxi Architecture, 2021, 47(6), 109 (in Chinese).
刘铖, 王一帆, 何影卓, 等. 山西建筑, 2021, 47(6), 109.
121 De Nardi C, Bullo S, Ferrara L, et al. Materials and Structures, 2017, 50(4), 191.
122 Li G Y, Huang X F, Lin J S, et al. Construction and Building Materials, 2019, 200, 36.
123 Ferrara L, Krelani V, Carsana M. Construction and Building Materials, 2014, 68, 535.
124 Guo N L. Research on self-healing properties of inner-mixed type CCCW concrete under different environmental influence factors. Master's Thesis, Kunming University of Science and Technology, China, 2020 (in Chinese).
郭宁林. 内掺型CCCW混凝土在不同环境影响因素下的自愈合性能研究. 硕士学位论文, 昆明理工大学, 2020.
125 Sisomphon K, Copuroglu O. In:2nd International Conference on Durability of Concrete Structures ICDCS2010. Japan, 2011, pp. 157.
126 Bohus S, Drochytka R. Applied Mechanics and Materials, 2012, 166, 1773.
127 Teng L W, Huang R, Chen J, et al. Materials, 2014, 7(1), 399.
128 Teng L W, Lin W T, Chen J, et al. Advanced Materials Research, 2014, 842, 74.
129 Lucas S S, Moxham C, Tziviloglou E, et al. Science and Technology of Materials, 2018, 30, 93.
130 Termkhajornkit P, Nawa T, Yamashiro Y, et al. Cement and Concrete Composites, 2009, 31(3), 195.
131 Ahn T, Kishi T. Journal of Advanced Concrete Technology, 2010, 8(2), 171.
132 Tittelboom K V, Gruyaert E, Rahier H, et al. Construction and Building Materials, 2012, 37, 349.
133 Chen G Y, Wu X M, Fan Y M. New Building Materials, 2009, 36(8), 68 (in Chinese).
陈光耀, 吴笑梅, 樊粤明. 新型建筑材料, 2009, 36(8), 68.
134 Chen G Y. Studies on cementitious capillary crystalline waterproofing agent and its self-healing function for cracks. Master's Thesis, South China University of Technology, China, 2010 (in Chinese).
陈光耀. 水泥基渗透结晶型防水剂及其裂缝自修复性能的研究. 硕士学位论文, 华南理工大学, 2010.
135 Wang D, Zhang Y Q, Ceng C H, et al. New Building Materials, 2008(2), 77 (in Chinese).
王丹, 张玉奇, 曾昌洪, 等. 新型建筑材料, 2008(2), 77.
136 Yu J Y, Li W L, Guo D X, et al. China Building Waterproofing, 2009(8), 14 (in Chinese).
余剑英, 李旺林, 郭殿祥, 等. 中国建筑防水, 2009(8), 14.
137 Kuang Y C, Ou J P. Journal of Railway Science and Engineering, 2008(1), 6 (in Chinese).
匡亚川, 欧进萍. 铁道科学与工程学报, 2008(1), 6.
138 Zhang X Q, Zhao Z C, Wang H M. New Building Materials, 2008(4), 68 (in Chinese).
张新庆, 赵长才, 王惠明. 新型建筑材料, 2008(4), 68.
139 Yang K H, Ou Z W, Xiao H B, et al. Rock and Soil Mechanics, 2016, 37(2), 477 (in Chinese).
杨康辉, 欧忠文, 肖寒冰, 等. 岩土力学, 2016, 37(2), 477.
140 Shang X H, Jing D H. Journal of Water Resources and Architectural Engineering, 2015, 13(2), 131 (in Chinese).
尚晓华, 敬登虎. 水利与建筑工程学报, 2015, 13(2), 131.
141 Zhong J G, Geng B J, Ren X, et al. Journal of Yangtze River Scientific Research Institute, DOI:10. 11988/ckyyb. 20220563 (in Chinese).
钟聚光, 耿必君, 任鑫, 等. 长江科学院院报, DOI:10. 11988/ckyyb. 20220563.
142 Hou S J, Huang W, He X F, et al. Journal of Anhui University of Technology(Natural Science), 2022, 39(2), 153 (in Chinese).
候世珺, 黄伟, 贺雄飞, 等. 安徽工业大学学报(自然科学版), 2022, 39(2), 153.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed