Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22090257-6    https://doi.org/10.11896/cldb.22090257
  无机非金属及其复合材料 |
机械粉磨对黄河泥沙颗粒群特性及胶凝活性的影响
张洪磊, 曹明莉*
大连理工大学土木工程学院,辽宁 大连 116024
Influence of Mechanical Grinding on the Particle Groups Characteristics and Cementitious Activity of Yellow River Sediment
ZHANG Honglei, CAO Mingli*
School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 4404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过机械粉磨对黄河泥沙进行活性激发,研究了随着机械粉磨时间的延长,泥沙颗粒群特性和胶凝活性的变化,从颗粒群粒径分布变化、矿物组成、晶体结构等方面表征了其性能的变化且阐释了活化机理,并利用灰色关联度分析定量化表征颗粒群粒径分布的变化与活性指数的内在联系。活性指数随着机械粉磨时间的延长先增大后减小,其中机械粉磨40 min时,泥沙活性指数最高,3 d、7 d、28 d分别为53.9%、67.6%、84.7%。在机械粉磨40 min内,颗粒粒径变化幅度较高,超过40 min后粒径变化幅度较小。泥沙粒径分布中,小于20 μm的颗粒对活性指数起增强作用;大于20 μm的颗粒对活性指数起劣化作用;10~20 μm粒径范围内颗粒含量的波动对活性指数的影响最大。经机械粉磨后,泥沙矿物晶体的衍射峰半高宽增大,晶粒尺寸减小,晶体的结晶度显著下降,这些晶体结构参数的变化是泥沙活性指数提高的内在因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洪磊
曹明莉
关键词:  机械粉磨  颗粒群特性  活性指数  结晶度  灰色关联度分析    
Abstract: In this work, Yellow River sediment was activated by mechanical grinding. The changes in particle groups characteristics and cementitious activity of the sediment with increasing grinding time were investigated. The changes in particle size distribution, mineral composition and crystal structure were characterized to explain the mechanism of mechanical activation, and the intrinsic relationship between variations in particle size distribution and activity index was expressed quantitatively using gray correlation analysis. The activity index increased and then decreased with the increase of mechanical grinding time, and the highest activity index at 40 min was 53.9%, 67.6% and 84.7% for 3 d, 7 d and 28 d, respectively. Within 40 min, the reduction of particle size was higher, and the decrease of particles was smaller after more than 40 min. In the particle size distribution of the sediment, particles smaller than 20 μm played an enhancing role on the activity index;particles larger than 20 μm played a deteriorating role on the activity index;the variation of particle content in the particle size range of 10—20 μm exhibited the greatest influence on the activity index. After mechanical milling, the half-height width of the diffraction peaks increased, the grain size decreased, and the crystallinity of the mineral crystals decreased significantly. These changes in crystal structure parameters were intrinsic factors for the increase of activity index.
Key words:  mechanical grinding    particle groups characteristics    activity index    crystallinity    gray correlation analysis
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU525  
通讯作者:  *曹明莉,大连理工大学土木工程学院教授、博士研究生导师。本科及硕士毕业于武汉工业大学(现武汉理工大学)材料科学专业,博士毕业于大连理工大学材料学专业(建筑材料方向)。2017—2018年澳大利亚 CSIRO Manufacturing 访问学者。目前主要从事水泥基材料微纳米改性及多尺度纤维增强理论与技术、黄河泥沙资源化利用等方面的研究工作。近年来以一作/通信作者在ACI、ASCE、Composites Part B、Composites Part A、Cement and Concrete Composites、Construction and Building Materials、《材料导报》《硅酸盐学报》等期刊发表SCI/EI论文60余篇,授权国家发明专利14项,获得省部级以上奖励10余项;承担国家、省部级科研项目10余项,主持国际合作技术开发及成果转化项目2项。minglic@dlut.edu.cn   
作者简介:  张洪磊,2016年6月、2019年6月分别于青岛理工大学和吉林建筑大学获得工学学士学位和硕士学位。现为大连理工大学土木工程学院博士研究生,在曹明莉教授的指导下进行研究。目前主要研究领域为黄河泥沙的资源化利用。
引用本文:    
张洪磊, 曹明莉. 机械粉磨对黄河泥沙颗粒群特性及胶凝活性的影响[J]. 材料导报, 2024, 38(13): 22090257-6.
ZHANG Honglei, CAO Mingli. Influence of Mechanical Grinding on the Particle Groups Characteristics and Cementitious Activity of Yellow River Sediment. Materials Reports, 2024, 38(13): 22090257-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090257  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22090257
1 Liu H. People's Yellow River, 2019, 41(6), 168 (in Chinese).
刘慧. 人民黄河, 2019, 41(6), 168.
2 Guan C. Experimental design of plastic concrete performance with Yellow River sediment. Master's Thesis, Zhengzhou University, China, 2014(in Chinese).
关超. 黄河泥沙塑性混凝土性能试验设计. 硕士学位论文, 郑州大学, 2014.
3 Zhang T Y, Wang Z L, Zhu H T, et al. Journal of Sichuan University (Engineering Science Edition), 2015, 47(4), 69 (in Chinese).
张廷毅, 汪自力, 朱海堂, 等. 四川大学学报(工程科学版), 2015, 47(4), 69.
4 Wang P, Zheng G H, Shao J, et al. People's Yellow River, 2012, 34(5), 12 (in Chinese).
王萍, 郑光和, 邵菁, 等. 人民黄河, 2012, 34(5), 12.
5 Zheng L. Research on cementation technology for making flood control stone using Yellow River sediment. Master's Thesis, Dalian University of Technology, China, 2016(in Chinese).
郑乐. 利用黄河泥沙制作防汛石材固结胶凝技术研究. 硕士学位论文, 大连理工大学, 2016.
6 Wu C, Hong Z, Yin Y, et al. Construction and Building Materials, 2020, 252, 119.
7 Hamidi M, Kacimi L, Cyr M, et al. Construction and Building Materials, 2013, 47, 1268.
8 Souri A, Kazemi-Kamyab H, Snellings R, et al. Cement and Concrete Research, 2015, 77, 47.
9 Sima M, John L P, Jannie S J V D. Minerals Engineering, 2013, 52, 31.
10 Wan Q, Zhang Y, Zhang R. Cement and Concrete Composites, 2020, 111, 103635.
11 Geng Y, Qiang W, Zhiming W, et al. Powder Technology, 2020, 360, 863.
12 Yao G, Cui T, Zhang J, et al. Advanced Powder Technology, 2020, 31(11), 4500.
13 GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法), 中国标准出版社, 2021.
14 GB/T 51003-2014, 矿物掺合料应用技术规范, 中国建筑工业出版社, 2014.
15 Feng L, Zhang Y J, Zhang X, et al. Journal of Construction Materials, 2009, 12(3), 272(in Chinese).
冯蕾, 张永娟, 张雄, 等. 建筑材料学报, 2009, 12(3), 272.
16 Zhu M. Study on the chemical effects of mechanical forces and fractal theory of mineral phase grinding of cement-based materials. Ph. D. Thesis, Wuhan University of Technology, China, 2005(in Chinese).
朱明. 水泥基材料矿相粉磨机械力化学效应与分形理论研究. 博士学位论文, 武汉理工大学, 2005.
17 Tripathi A, Sankrityayan U, Gupta V K. In: Proceedings International Mineral Processing Congress (IMPC). New Delhi, 2012, pp.5000.
18 Liu S, Li Q, Xie G, et al. Powder Technology, 2016, 295, 133.
19 Guo W, Li D X, Chen J H, et al. Journal of Construction Materials, 2011, 14(3), 371 (in Chinese).
郭伟, 李东旭, 陈建华, 等. 建筑材料学报, 2011, 14(3), 371.
20 Wang S X. Preparation and performance study of composite cementitious materials for iron tailings. Master's Thesis, Hebei University of Engineering, China, 2022(in Chinese).
王绍熙. 铁尾矿复合胶凝材料的制备及性能研究. 硕士学位论文, 河北工程大学, 2022.
21 Biljana I, Vlastimir R, Mirjana M, et al. Applied Clay Science, 2016, 123, 173.
22 Alex T C, Kumar R, Roy S K, et al. Powder Technology, 2014, 264, 105.
23 Yao G, Cui T, Zhang J, et al. Advanced Powder Technology, 2020, 31(11), 4500.
24 Qiu Xiaohui, Zhang Qingjin. Journal of South China University of Technology (Natural Science Edition), 1992(4), 145.
25 Sanchez-Soto P J, Jimenez De Haro M D C, Perez-Maqueda L A, et al. Journal of the American Ceramic Society, 2000, 83(7), 1649.
26 Hao B H. Mining and Metallurgical Engineering, 2001(4), 64 (in Chinese).
郝保红. 矿冶工程, 2001(4), 64.
27 McMillan P, Piriou B, Navrotsky A. Geochimica et Cosmochimica Acta, 1982, 46(11), 2021.
28 Skvarlova A, Kanuchova M, Bakalar T, et al. Inynieria Mineralna, 2020, 1(2), 201.
29 Liu Y, Zeng F, Sun B, et al. Minerals, 2019, 9(6), 358.
30 Li C H, Ju X, Huang J, et al. Nuclear Instruments & Methods in Physics Research, 2011, 269(5), 544.
[1] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[2] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[3] 匡敬忠, 朱陆平, 司加保, 黄哲誉, 原伟泉, 邹志磊, 邱廷省. 钨尾矿机械-化学活化及其与水泥水化反应机理[J]. 材料导报, 2021, 35(13): 13018-13024.
[4] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[5] 赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed