Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21040130-7    https://doi.org/10.11896/cldb.21040130
  无机非金属及其复合材料 |
基于正交试验的拜耳法赤泥活化机理及性能分析
李克亮1,2,*, 宋子明1
1 华北水利水电大学土木与交通学院,郑州 450045
2 河南省废物利用技术与装备工程研究中心,郑州 450045
Analysis of Bayer Red Mud Activation Mechanism and Performance Based on Orthogonal Experiment
LI Keliang1,2,*, SONG Ziming1
1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 Waste Utilization Technology and Equipment Engineering Research Center of Henan Province, Zhengzhou 450045, China
下载:  全 文 ( PDF ) ( 9918KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拜耳法赤泥产生量大,污染严重,且活性较低,在胶结材料中直接利用难度较大。使用激光粒度分析仪(LPA)、扫描电镜(SEM)分析不同比表面积的拜耳法赤泥的粒度分布和颗粒形貌,使用X射线衍射仪(XRD)、热重分析(TGA)研究不同温度热活化后拜耳法赤泥的矿物组成及其矿物转化,并探究其活化机理。采用正交试验优化拜耳法赤泥的活化条件,分析比表面积、煅烧温度对水泥-拜耳法赤泥复合胶凝材料体系的胶砂抗压强度和水化产物的影响。结果表明,机械粉磨可显著增加拜耳法赤泥的比表面积和需水量,引起微细颗粒的团聚;低温煅烧过程中三水铝石、水钙铝榴石、钙霞石等矿物转化形成亚稳定状态的铝硅酸盐,有效提高了赤泥的反应活性。600 ℃下煅烧0.5 h后,拜耳法赤泥的活性指数高达95.93%,比室温(R.T.)下处理的高32.5%;使用600 ℃下煅烧的拜耳法赤泥时,复合胶凝材料的水化放热速率峰值最大,出现的时间最早。复合胶凝材料的水化产物主要有C-S-H凝胶和氢氧化钙晶体,活性高的热活化拜耳法赤泥发生水化反应时消耗的氢氧化钙更多。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李克亮
宋子明
关键词:  拜耳法赤泥  正交试验  活化机理  性能  活性指数  煅烧  水化产物    
Abstract: Huge emission, serious pollution and low activity are main characteristics of Bayer red mud, which make it difficult to directly utilize Bayer red mud in cementitious material. In this work, the particle size distribution and the particle morphology were analyzed by laser particle size analyzer (LPA) and scanning electron microscope (SEM), while the mineral composition and the mineral transformation with temperature were cha-racterized by X-ray diffraction (XRD) and the thermogravimetric analysis (TGA), with the activation mechanism of Bayer red mud analyzed further. The orthogonal experiments were used to optimize the activation conditions of Bayer red mud. The effects of specific surface area and calcination temperature of Bayer red mud on the compressive strength and the hydration products of the composite cementitious material were analyzed. Mechanical grinding significantly increases the specific surface area and the water requirement of the Bayer red mud, but brings the agglomeration of fine particles. During the low-temperature calcination process, gibbsite, hibschite and cancrinite transform to form a metastable aluminosilicate, which effectively improves the reaction activity of Bayer red mud. After calcination at 600 ℃ for 0.5 h, the activity index of Bayer red mud is as high as 95.93%,which is 32.5% higher than that of the mud treated under room temperature (R.T.). When Bayer red mud calcined at 600 ℃ is used, the peak value of hydration heat rate of the composite cementitious material is the largest, and it appears firstly. The hydration products of the composite cementitious material mainly include C-S-H gel and calcium hydroxide. The Bayer red mud with higher activity can reacts with more calcium hydroxide.
Key words:  Bayer red mud    orthogonal experiment    activation mechanism    performance    activity index    calcination    hydration product
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TQ172.9  
基金资助: 河南省自然科学基金(182300410259);华北水利水电大学研究生教育创新计划基金(YK2020-14)
通讯作者:  *likeliang@ncwu.edu.cn   
作者简介:  李克亮,华北水利水电大学教授,博士,硕士研究生导师。1997年在华北水利水电学院获得工业与民用建筑工程专业工学学士学位,2000年在南京水利科学研究院获得水工结构工程专业工学硕士学位,2008年在河海大学获得结构工程专业工学博士学位。现为河南省废物利用技术与装备工程研究中心副主任、华北水利水电大学固废资源化利用与先进土木工程材料研究所长及土木工程系主任。主要从事低碳生态建筑材料、固体废弃物资源化利用、高性能无机胶凝材料及其混凝土的研究工作。出版专著2部,获得国家发明专利20余项。
引用本文:    
李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
LI Keliang, SONG Ziming. Analysis of Bayer Red Mud Activation Mechanism and Performance Based on Orthogonal Experiment. Materials Reports, 2022, 36(16): 21040130-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040130  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21040130
1 Reddy P S, Narala G R, Serjun V Z, et al. Waste and Biomass Valorization, 2021, 12(3), 1185.
2 Hu G Y, Lyu F, Khoso S A, et al. Hydrometallurgy,2020,196,105422.
3 Wang M, Liu X. Journal of Hazardous Materials,2020,408(1),124420.
4 Antunes M L P, Couperthwaite S J, da Conceição F T, et al. Industrial & Engineering Chemistry Research, 2012, 51(2), 775.
5 Zhao Y, Wang J, Luan Z K, et al. Journal of Hazardous Materials, 2009, 165(1-3),1193.
6 Li Y, Liu X M, Li Z P, et al. Journal of Cleaner Production, 2020, 284(12), 124777.
7 Wang F, Pan H, Xu J. Environmental Pollution, 2020, 263,114416.
8 Teng X L, Li J F, Wang J K, et al. Separation and Purification Techno-logy, 2021, 267, 118661.
9 Wang L, Chen L, Guo B L,et al. Journal of Hazardous Materials, 2020, 400, 123317.
10 Wang B, Ma J, Wang D, et al. Catalysis Today, 2021, 376, 247.
11 Wang S H,Jin H, Deng Y, et al. Journal of Cleaner Production, 2020, 289(11), 125136.
12 Ye N, Yang J K, Ke X Y, et al. Journal of the American Ceramic Society, 2014, 97(5), 1652.
13 Hoang M D, Do G M, Le W G. Construction and Building Materials, 2020, 259, 119779.
14 Singh S, Aswath M U, Ranganath R V. Construction and Building Materials, 2018, 177, 91.
15 Geng J J, Zhou M, Zhang T, et al. Materials & Structures, 2017, 50(2), 109.
16 Li Y C, Min X B, Yong K, et al. Waste Management, 2019, 83, 202.
17 Fu L Y. Study on the preparation of alkali activated cementing material by Bayer red mud activation. Master's Thesis, Kunming University of Scie-nce and Technology, China, 2007(in Chinese).
付凌雁. 拜耳法赤泥活化制备碱激发胶凝材料的研究. 硕士学位论文,昆明理工大学,2007.
18 Ye N. Study on the preparation of geopolymer from pretreated Bayer red mud and mechanism of the strength formation. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
叶楠. 拜耳法赤泥活化预处理制备地聚物及形成强度机理研究. 博士学位论文,华中科技大学,2016.
19 Agrawal S, Dhawan N. Sustainable Materials and Technologies, 2021, 27(2-3), e00246.
20 Shehata N, Sayed E T, Abdelkareem M A. Science of the Total Environment, 2020, 762(5), 143166.
21 Hertel T, Pontikes Y. Journal of Cleaner Production, 2020, 258, 120610.
22 Liu J P, Li X Y, Lu Y S, et al. Construction and Building Materials, 2020, 263(2), 120653.
23 Zhang J Z, Liu S J, Yao Z Y, et al. Construction and Building Mate-rials, 2018, 180, 605.
24 Samal S, Ray A K, Bandopadhyay A. Journal of Cleaner Production, 2015, 101, 368.
25 Kong X F, Li M, Xue S G, et al. Journal of Hazardous Materials, 2017, 324, 382.
26 Davidovits J. Geopolymer chemistry and applications, Geopolymer Institute, Saint-Quentin, France, 2011.
27 Hu Y, Liang S, Yang J, et al. Construction and Building Materials, 2019, 200, 398.
28 Cheng X W, Long D,Zhang C, et al. Journal of Cleaner Production, 2019, 238, 117902.
29 Kakali G, Perraki T, Tsivilis S, et al. Applied Clay Science, 2001, 20(1-2), 73.
30 Xu X H, Song J, Li Y, et al. Construction and Building Materials, 2019, 212, 266.
31 Liu T Y, Zhang J S, Wu J Q, et al. Journal of Cleaner Production, 2019, 223,790.
32 Sun Y H, Li J S, Chen Z, et al. Construction and Building Materials, 2021, 287(3),122993.
33 Muraleedharan M, Nadir Y. Ceramics International, 2021, 47(10), 13257.
34 Hu W, Nie Q K, Huang B S, et al. Journal of Cleaner Production, 2018, 186(6), 799.
35 Zhang J, Li S, Li Z F, et al. Journal of Material Cycles and Waste Mana-gement, 2020, 22(4), 1328.
36 Liu D X, Huang Y, Hu J Y, et al. Advances in Cement Research, 2021, 33(4), 145.
37 Hou D S, Wu D, Wang X P, et al. Cement and Concrete Composites, 2021, 115, 103862.
38 Zhang W, Liu X M, Wang Y G, et al. Journal of Hazardous Materials, 2021,410,124592.
[1] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[2] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[3] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[4] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[5] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[6] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[7] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[8] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[9] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[10] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[11] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[12] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[13] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[14] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[15] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed