Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21030241-5    https://doi.org/10.11896/cldb.21030241
  无机非金属及其复合材料 |
生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响
赵晓雯1, 张检梅1, 陈徐东2, 季韬1,*
1 福州大学土木工程学院,福州 350108
2 河海大学土木与交通学院,南京 210098
Effects of Quicklime-Sodium Carbonate Content and Slag Activity on Cracking Resistance of Alkali-activated Slag Mortar
ZHAO Xiaowen1, ZHANG Jianmei1, CHEN Xudong2, JI Tao1,*
1 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
下载:  全 文 ( PDF ) ( 4183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用生石灰和碳酸钠(物质的量比1∶1)为激发剂制备碱矿渣砂浆,分别研究生石灰-碳酸钠掺量(即Na2O掺量,为2.5%、4.5%、6.5%和8.5%)和矿渣活性(取决于化学成分和细度等)对碱矿渣砂浆劈裂抗拉强度、内钢环应变、环向拉应力和抗裂性能的影响。研究发现:普通硅酸盐水泥砂浆的抗裂性能优于碱矿渣砂浆;随着Na2O掺量的增加,碱矿渣砂浆劈裂抗拉强度及抗裂性能先提升后降低,当Na2O掺量为6.5%时,抗裂性能最优;随着矿渣活性的增加,碱矿渣砂浆劈裂抗拉强度增大,但其抗裂性能降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓雯
张检梅
陈徐东
季韬
关键词:  生石灰  碳酸钠  矿渣活性  碱矿渣砂浆  抗裂性能    
Abstract: Alkali-activated slag mortar was prepared using quicklime and sodium carbonate (the molar ratio of 1∶1) as activators. The effect of quicklime and sodium carbonate content (namely Na2O content, 2.5%, 4.5%, 6.5% and 8.5%) and slag activity (depending on the chemical composition and fineness, etc.) on the splitting tensile strength, strain of interior steel ring, circumferential tensile stress and cracking resistance of alkali-activated slag mortars (AM) was investigated. It is found that the cracking resistance of Portland cement mortars is better than that of AM; with the increase of Na2O content, the splitting tensile strength and cracking resistance increase firstly and then decrease. When the Na2O content is 6.5%, the cracking resistance is the best; with the increase of slag activity, the splitting tensile strength of AM increases, but its cracking resistance decreases.
Key words:  quicklime    sodium carbonate    slag activity    alkali-activated slag mortar    cracking resistance
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878179);福建省自然科学基金(2021J02021)
通讯作者:  *jt72@163.com   
作者简介:  赵晓雯,2015年9月至2019年6月在福州大学至诚学院攻读学士学位,2019年9月至今在福州大学土木工程学院攻读硕士学位,主要研究方向为环保水泥基材料。季韬,福州大学教授、博士研究生导师,美国TRB学会AKM50分会委员,国际先进材料联合会委员(FIAAM),中国建筑学会建筑材料分会理事。2000年毕业于浙江大学,获博士学位。长期从事固废利用、环保水泥基材料及其工程应用研究,主持国家自然科学基金面上项目2项,参加国家自然科学基金重点项目等20多项。授权的发明专利28项,出版著作2部。在学术刊物上发表论文130多篇,被EI收录的论文有50多篇,被SCI收录的论文有50多篇。主编中国工程建设标准化协会标准(CECS)2部,参与行业和省级标准3部。欢迎投稿、订阅及刊登广告
引用本文:    
赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
ZHAO Xiaowen, ZHANG Jianmei, CHEN Xudong, JI Tao. Effects of Quicklime-Sodium Carbonate Content and Slag Activity on Cracking Resistance of Alkali-activated Slag Mortar. Materials Reports, 2022, 36(16): 21030241-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030241  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21030241
1 Fernandez J A, Palomo J G, Puertas F. Cement and Concrete Research, 1999, 29(8), 1313.
2 Collins F, Sanjayan J G. Cement and Concrete Research, 2000, 30(5), 791.
3 Palacios M, Puertas F. Cement and Concrete Research, 2007, 37(5), 691.
4 Xin D S. Study on preparation and mechanism of one-part alkali-activated slag cementitious material with quicklime, slaked lime and sodium carbonate. Master's Thesis, Fuzhou University, China, 2018(in Chinese).
辛东升. 单组份生/熟石灰与碳酸钠激发矿渣胶凝材料的制备及其机理研究.硕士学位论文, 福州大学, 2018.
5 Wang J X, Lyu X J, Wang L Y, et al. Journal of Cleaner Production, 2018, 171, 622.
6 Xia J. Study on mix proportion design of alkali slag concrete. Master's Thesis, Chongqing University, China, 2013(in Chinese).
夏婧. 碱矿渣混凝土配合比设计研究. 硕士学位论文, 重庆大学, 2013.
7 Wu P, Lyu X J, Hu S G, et al. Silicate Bulletin, 2014, 33(10), 2572(in Chinese).
吴蓬, 吕宪俊, 胡术刚,等. 硅酸盐通报, 2014, 33(10), 2572.
8 Chen K J. Study on autogenous shrinkage and crack resistance of alkali-activated slag ceramsite concrete. Master's Thesis, Fuzhou University, China, 2016(in Chinese).
程可佳. 碱矿渣陶粒混凝土的自收缩及抗裂性能研究.硕士学位论文, 福州大学, 2016.
9 Ji T, Chen C Y, Chen Y Y, et al. Construction and Building Materials, 2013, 44, 726.
10 Zhang B B. Early age tensile creep and anti-cracking performance evaluation method of steel fiber reinforced ceramsite concrete. Master's Thesis, Fuzhou University, China, 2014(in Chinese).
张彬彬. 钢纤维陶粒混凝土早期拉伸徐变及抗裂性能评价方法. 硕士学位论文, 福州大学, 2014.
11 Zhuang Y Z, Chen C Y, Ji T. Construction and Building Materials, 2013, 46(8), 13.
12 Zhang J, Shi C J, Zhang Z H. Construction and Building Materials, 2021, 269, 121258.
13 Chen W W, Li B, Wang J, et al. Cement and Concrete Research, 2021, 141, 106322.
14 Su Y, Wang Z H, Wang Y B, et al. Journal of Wuhan University of Technology, 2015, 37(11),32(in Chinese).
苏英, 王志虎, 王迎斌,等. 武汉理工大学学报, 2015, 37(11), 32.
15 He X Y, Zhang C, Su Y, et al. Concrete, 2019(9),83(in Chinese).
贺行洋, 张晨, 苏英, 等. 混凝土, 2019(9),83.
[1] 虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
[2] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[3] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[4] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[5] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[6] 朱月风, 司春棣, 乔亚宁, 李彦伟. 沥青标号和用量对再生沥青混合料性能的影响[J]. 材料导报, 2021, 35(6): 6086-6092.
[7] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[8] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed