Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6086-6092    https://doi.org/10.11896/cldb.19100237
  无机非金属及其复合材料 |
沥青标号和用量对再生沥青混合料性能的影响
朱月风1,2,3, 司春棣1,2,3, 乔亚宁4, 李彦伟5,6
1 石家庄铁道大学,省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 河北省交通安全与控制重点实验室,石家庄 050043
3 石家庄铁道大学交通运输学院,石家庄 050043
4 中国矿业大学力学与土木工程学院,徐州 221116
5 河北省交通规划设计院,石家庄 050043
6 交通运输行业公路建设与养护技术材料及装备研发中心,石家庄 050043
Influence of Asphalt Grade and Content on the Properties of RAP Mixtures
ZHU Yuefeng1,2,3, SI Chundi1,2,3, QIAO Yaning4, LI Yanwei5,6
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang 050043, China
3 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
4 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
5 Hebei Provincial Communications Planning and Design Institute, Shijiazhuang 050043, China
6 Research and Development Center of Transport Industry of Technologies, Materials and Equipments of Highway Construction and Maintenance, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 4234KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究新沥青标号和用量对回收沥青路面材料(RAP)再生沥青混合料性能的影响,分别选取70#和90#道路石油沥青,以最佳新沥青掺量(OAC)为基准,分别制备OAC、OAC+0.5%和OAC-0.5%,RAP掺量分别为0%、20%和40%的再生沥青混合料。通过沥青混合料动态模量试验、疲劳试验、低温圆盘拉伸试验和冻融循环试验分析了不同沥青混合料的性能;接着,为更好地区分不同再生沥青混合料的抗裂性能,萃取得到不同再生沥青混合料中的沥青,对沥青进行高温DSR频率扫描试验,应用G-R常数分析不同沥青的抗裂性能。结果表明:当新加沥青较软、掺量较高,而RAP掺量较低时,再生沥青混合料的抗疲劳开裂能力及抗低温抗裂能力更强;反之,当新沥青较硬,RAP掺量较高时,再生沥青混合料的硬度较高,有较好的抗车辙能力。当新加沥青为70#沥青,掺量为OAC-0.5%、40%RAP时,再生沥青混合料低温性能不满足要求。水稳定性分析表明,一次冻融循环用于评价再生沥青混合料的水稳定性具有一定局限性;两次冻融循环试验表明,再生沥青混合料的水稳定性比新沥青混合料差。沥青G-R常数分析表明,低标号沥青的RAP掺量较高时,萃取的沥青更接近开裂标线,更易发生开裂行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱月风
司春棣
乔亚宁
李彦伟
关键词:  沥青标号  RAP  最佳沥青用量  抗裂性能  G-R常数    
Abstract: In order to study the influence of new asphalt grade and content on the properties of RAP mixtures, 70# and 90# asphalt were selected to prepare the RAP mixtures with 0%, 20% and 40% RAP content. Based on the optimum asphalt content (OAC) of new binder, the OAC, OAC+0.5% and OAC-0.5% content of RAP mixtures were also fabricated. Dynamic modulus test, fatigue test and low temperature disc-shape tension test were conducted to analyze the properties of RAP mixtures. Then, for better understanding the crack resistance of RAP mixtures, the binders were extracted and recovered to study the cracking properties using G-R parameters. The mixtures results show that when using soft binder, hig-her binder content and lower RAP content, the RAP mixtures have better fatigue resistance and low temperature crack resistance. On the contrary, with harder binder and higher RAP content, the RAP mixtures have better rutting resistance. However, the low temperature results show that with 70# binder with OAC-0.5% and 40% RAP content, the RAP mixtures could not meet the requirement. The analysis of water stability shows that one time freeze-thaw cycle is limited to evaluate the water stability of RAP mixtures. After two time freeze-thaw cycles, the water stability of RAP mixtures is lower than that of new asphalt mixture. The G-R parameter results show that with higher RAP content and harder binder, the sextracted binders are more likely to crack.
Key words:  asphalt grade    RAP    optimum asphalt content (OAC)    anti-crack resistance    G-R parameter
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  U416.217  
基金资助: 河北省自然科学基金项目(E2020210089);国家自然科学基金项目(11972237;12072204);河北省高等学校科学技术研究项目(QN2019234);河北省引进留学回国人员项目(C20190513;C20200)
通讯作者:  sichundi@stdu.edu.cn   
作者简介:  朱月风,博士,毕业于长安大学道路与铁道工程专业,石家庄铁道大学讲师,硕士研究生导师,主要从事沥青路面结构与新型路面材料方面的研究,在国内外期刊发表文章20多篇,SCI/EI检索8篇,获国家专利6项。
司春棣,石家庄铁道大学教授,博士研究生导师,交通运输学院科研副院长。2007年博士毕业于天津大学,美国密歇根理工大学交通材料研究中心访问学者,河北省青年拔尖人才,河北省新世纪“三三三人才工程”人选。主持国家自然科学基金2项、河北省自然科学基金2项、河北省教育厅优秀青年基金1项、河北省留学回国人员重点资助项目1项,发表学术论文30余篇,被SCI、EI检索20余篇,参编地方标准1部。获河北省科技进步一等奖。其主要研究方向包括路面计算力学及仿真、沥青路面材料与设计方法、车-路-桥耦合动力学、材料分子动力学模拟等。
引用本文:    
朱月风, 司春棣, 乔亚宁, 李彦伟. 沥青标号和用量对再生沥青混合料性能的影响[J]. 材料导报, 2021, 35(6): 6086-6092.
ZHU Yuefeng, SI Chundi, QIAO Yaning, LI Yanwei. Influence of Asphalt Grade and Content on the Properties of RAP Mixtures. Materials Reports, 2021, 35(6): 6086-6092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100237  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6086
1 Kim S. Evaluation of use of high percentage of reclaimed asphalt pavement (RAP) for superpave mixture: research report, Florida State Materials Office, USA,2007.
2 Paul H R. Evaluation of recycled projects for performance, Louisiana Transportation Research Center, USA,1998.
3 Zhang X Z. Material mechanics, Northwest Polytechnic University Press, China,2005.
张新占.材料力学,西北工业大学出版社,2005.
4 West R, Willis J R, Marasteanu M. Improved mix design, evaluation and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content, Transportation Research Board, USA,2013.
5 Zhang Q L, Yang B C, Wang R, et al. Highway Engineering,2016,41(3),17(in Chinese).
张勤玲,杨保存,王荣,等.公路工程,2016,41(3),17.
6 Jia L S, Lu Z Y. Highway Engineering,2017,42(2),296.
贾立术,卢争艳.公路工程,2017,42(2),296.
7 Bennert T, Daniel J S, Mogawer W. Journal of the Transportation Research Board,2014,2445,83.
8 Mogawer W S, Bennert T, Daniel J, et al. Road Materials and Pavement Design,2012,13(sup 1),183.
9 Hill B, Oldham D, Behnia B, et al. Journal of the Transportation Research Board, DOI:10.3141/2371-06.
10 Hill B, Oldham D, Behnia B, et al. International Journal of Pavement Engineering,2018,19(4),362.
11 Daniel J S, Kim Y R. Journal of the Association of Asphalt Paving Technologists,2002,619.
12 Wagoner M P, Buttlar W R, Paulino G H,et al. Journal of the Transportation Research Board,2005,1929), 183.
13 Glover C J, Davison R R, Domke C H,et al. Bituminous Binders,2005,46(2),35.
14 Rowe G M, Sharrock M J. Journal of the Transportation Research Board,2011,2207,125.
15 Anderson R M, King G N, Hanson, D I,et al. Asphalt Paving Technology,2011,80(4),615.
16 Bao S H. A study on mix design of recycled asphalt concrete with high reclaimed asphalt pavement content. Master's Thesis, Southeast University,2015.
鲍世辉.高旧料掺量再生沥青混凝土配合比设计研究,硕士学位论文,东南大学,2015.
17 AASHTO TP 342-11, Standard method of test for determining dynamic modulus of hot mix asphalt, American Association of State and Highway Transportation Officials,2011.
18 Hot mix asphalt materials, mixture design and construction, Third edition, National Center for Asphalt Technology at Auburn University,2009,pp.332.
19 AASHTO TP 107-14, Standard method of test for determining the damage characteristic curve of asphalt mixtures from direct tension cyclic fatigue tests, American Association of State and Highway Transportation Officials,2014.
20 Schapery R. Composites Engineering,1991,1(3),167.
21 Underwood B S, Kim Y R, Guddati M N. International Journal of Pavement Engineering,2010,11(6),459.
22 Jiang Y X, Gu X Y, Zhou Z. Journal of Jiangsu University (Natural Science Edition),2018,39(3),368(in Chinese).
姜严旭,顾兴宇,周洲.江苏大学学报(自然科学版),2018,39(3),368.
23 Marasteau M, Moon K H, Teshale E Z,et al. Investigation of low temperature cracking in asphalt pavements national pooled fund study phase II, St. Paul, MN: Minnesota Department of Transportation,2012.
[1] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[2] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed