Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20020019-6    https://doi.org/10.11896/cldb.20020019
  无机非金属及其复合材料 |
碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析
杨医博1,2, 岳晓东2, 姚丁语2, 张迪2, 郭文瑛2, 王恒昌2
1 华南理工大学亚热带建筑科学国家重点实验室,广州 510641
2 华南理工大学土木与交通学院,广州 510641
Effect of Soda Residue Internal Curing Agent on Autogenous Shrinkage and Early Crack Resistance of High-strength and High-performance Concrete and Its Mechanism Analysis
YANG Yibo1,2, YUE Xiaodong2, YAO Dingyu2, ZHANG Di2, GUO Wenying2, WANG Hengchang2
1 State Key Laboratory of Subtropical Architectures Science, South China University of Technology, Guangzhou 510641, China
2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 4265KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱渣是氨碱法制纯碱排出的废渣,因其堆存和排放造成严重环境问题,急需被开发利用。将碱渣除氯、干燥、粉碎后制成碱渣内养护剂粉体,并将其用于水胶比为0.35和0.25的高强高性能混凝土中,研究其对混凝土自收缩和早期抗裂性能的影响。结果表明,碱渣内养护剂是以多孔碳酸钙颗粒为主,并含有部分二水石膏的微细粉体,具有良好的吸水释水性能。碱渣内养护剂对提高高强高性能混凝土内部相对湿度有一定的作用,但利用碱渣内养护剂引入附加水能更有效地提高混凝土内部相对湿度。在不降低混凝土28 d抗压强度的情况下,以碱渣内养护剂等质量取代5.25%的水泥,可降低混凝土3 d自收缩值约30%,降低圆环约束条件下混凝土3 d龄期拉应力超过20%,且对水胶比较低的混凝土效果较优,是一种性能优良的混凝土内养护材料。碱渣内养护剂减少自收缩的机理一是其中的二水石膏与水泥中的C3A反应生成膨胀性的钙矾石,补偿部分自收缩;二是其取代部分水泥,从源头上减少了自收缩;三是其多孔结构中的水分缓慢释放,提高了混凝土内部相对湿度,减少了自收缩的原动力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨医博
岳晓东
姚丁语
张迪
郭文瑛
王恒昌
关键词:  碱渣  内养护剂  高强高性能混凝土  相对湿度  自收缩  早期抗裂性能  机理    
Abstract: Soda residue is the waste residue released during the production of soda by an ammonia soda method. The improper treatment and disposal of soda residue have an adverse environmental impact and there is an urgent need to utilize this material to safeguard nature. After the process of dechlorinating, drying and crushing, the soda residual powder is utilized as an internal curing agent for the high-strength and high-performance concrete (HS-HPC) with the water binder ratio of 0.35 and 0.25. This work has evaluated the effect of the processed soda residue internal curing agent (SR) on the autogenous shrinkage and early crack resistance of HS-HPC. The results show that the SR is a fine powder mainly consisting of porous calcium carbonate particles with dihydrate gypsum as a part. The SR has exhibited a relatively high capacity of water absorption and release. Besides the positive effect of SR itself on the internal relative humidity, the additional water introduced by the SR can further improve the internal relative humidity of HS-HPC. Without reducing the 28 d compressive strength of HS-HPC, the results have shown that replacing 5.25% cement (by mass) with SR can reduce the 3 d autogenous deformation by about 30% and reduce the 3 d tensile stress by over 20% tested by the ring constraint method, particularly for the HS-HPC with lower water binder ratio. The SR has been examined to be a reliable internal curing agent for HS-HPC and there are three mechanisms collectively contributing to mitigating autogenous shrinkage. Firstly, the dihydrate gypsum in SR reacts with C3A to form an expansive ettringite to compensate for the autogenous shrinkage partially. Moreover, the SR partially replaces the cement and thus fundamentally reduces the autogenous shrinkage. Finally, the porous structure of SR allows the absorbed water to be released gradually, which improves the internal relative humidity of HS-HPC and thus reduces the capillary stress for the autogenous shrinkage.
Key words:  soda residue    internal curing agent    high-strength and high-performance concrete    relative humidity    autogenous shrinkage    early crack resistance    mechanism
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU528.042  
基金资助: 国家自然科学基金青年基金(51208210);华南理工大学国家级大学生创新创业训练计划(201810561199);华南理工大学百步梯攀登计划(EA20317001)
通讯作者:  yangyibo@scut.edu.cn   
作者简介:  杨医博,华南理工大学土木与交通学院,副教授。1997年本科毕业于哈尔滨建筑大学,同年进入华南理工大学攻读研究生,后经选拔硕博连读,2002年获材料学博士学位。同年加入华南理工大学土木工程系工作至今,主要从事结构耐久性、高性能与超高性能混凝土、固废综合利用等研究,发表论文100余篇。
引用本文:    
杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
YANG Yibo, YUE Xiaodong, YAO Dingyu, ZHANG Di, GUO Wenying, WANG Hengchang. Effect of Soda Residue Internal Curing Agent on Autogenous Shrinkage and Early Crack Resistance of High-strength and High-performance Concrete and Its Mechanism Analysis. Materials Reports, 2022, 36(12): 20020019-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020019  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20020019
1 Wu L M, Farzadnia N,Caijun Shi C J, et al. Construction and Building Materials, 2017, 149, 62.
2 Huang Y J. Research on monitoring of water transportation in concrete and mechanism of shrinkage deformation. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
黄义建. 混凝土内部水分迁移过程监测与收缩变形机理研究. 硕士学位论文, 哈尔滨工业大学, 2015.
3 Jiang Z W, Sun Z P, Wang P M. Journal of Building Materials, 2003, 6(4), 345 (in Chinese) .
蒋正武, 孙振平, 王培铭. 建筑材料学报, 2003, 6(4), 345.
4 Cusson D, Hoogeveen T. Cement and Concrete Research, 2008, 38(6), 757.
5 Ma X W, Liu J H, Shi C J. Construction and Building Materials, 2019,218, 385.
6 Ghourchian S, Wyrzykowski M, Lura P, et al. Construction and Building Materials, 2013,40, 135.
7 Liu F J, Wang J L, Qian X, et al. Cement and Concrete Research, 2017, 95, 39.
8 Wyrzykowski M, Ghourchian S, Sinthupinyo S, et al. Cement and Concrete Composites, 2016,71, 1.
9 Zhang W H, Zhou X J, Qiao W H.Journal of Water Resources and Architectural Engineering, 2018, 16(3), 60 (in Chinese).
张卫红, 周晓靖, 乔文号. 水利与建筑工程学报, 2018, 16(3), 60.
10 de Sensale G R, Goncalves A F. International Journal of Concrete Structures and Materials, 2014, 8(3), 229.
11 Bentur A, Igarashi S I, Kovler K. Cement and Concrete Research, 2001,31, 1587.
12 Shen D J, Wang X D, Cheng D B, et al. Construction and Building Materials, 2016,106, 512.
13 Mechtcherine V, Gorges M, Schroefl C, et al. Materials and Structures, 2014, 47, 541.
14 Kong X M, Zhang Z L.Journal of the Chinese Ceramic Society, 2014, 42(2), 150 (in Chinese).
孔祥明, 张珍林. 硅酸盐学报, 2014, 42(2), 150.
15 Craeye B, Tielemans T, Lauwereijssens G, et al. Road Materials and Pavement Design, 2012, 14(1), 90.
16 Liu C H, Wang H, Ren Z, et al.Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(6), 1190 (in Chinese).
刘成虎, 王辉, 任冶, 等. 武汉理工大学学报(交通科学与工程版), 2015, 39(6), 1190.
17 Zhong P H.Study on the autogenous shrinkage and mechanism of high strength concrete with super absorbent polymer. Master's Thesis, Chongqing University, China, 2015 (in Chinese).
钟佩华. 高吸水性树脂SAP对高强混凝土自收缩性能的影响及作用机理. 硕士学位论文, 重庆大学, 2015.
18 Yan W J.Research on performance and mechanism of mortar and concrete using soda residue as mineral admiture. Master's Thesis, South China University of Technology, China, 2015 (in Chinese).
严卫军. 碱渣用作矿物掺合料对砂浆和混凝土性能影响及其机理研究. 硕士学位论文, 华南理工大学, 2015.
19 Pu Y Q.Research of dechlorination Soda Residue used as internal curing materials on concrete performance influence and mechanism. Master's Thesis, South China University of Technology, China, 2017 (in Chinese).
普永强. 除氯碱渣用作内养护材料对混凝土性能影响及其机理研究. 硕士学位论文, 华南理工大学, 2017.
20 Zhang H Z.Research on the early shrinkage cracking performance of concrete under constraint conditions. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
张虎志. 约束条件下混凝土早期收缩开裂规律研究. 硕士学位论文, 哈尔滨工业大学, 2014.
[1] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[2] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[3] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[4] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[5] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[6] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[7] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[8] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[9] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[10] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[11] 刘宁, 朱永伟, 李学, 吴鹏飞. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7): 21060121-12.
[12] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[13] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[14] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[15] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed