Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20100178-6    https://doi.org/10.11896/cldb.20100178
  金属与金属基复合材料 |
FeCrAl合金的液态LBE/Pb腐蚀研究进展
马良义1,2, 台鹏飞1,3, 王志光1,2,3, 庞立龙1,2,3, 申铁龙1,2,3, 姚存峰1,2,3, 李靖1,2
1 中国科学院近代物理研究所,兰州 730000
2 中国科学院大学物理科学学院,北京 100049
3 先进能源科学与技术广东省实验室,广东 惠州 516000
Research Progress on Liquid LBE/Pb Corrosion of FeCrAl Alloys
MA Liangyi1,2, TAI Pengfei1,3, WANG Zhiguang1,2,3, PANG Lilong1,2,3, SHEN Tielong1,2,3, YAO Cunfeng1,2,3, LI Jing1,2
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000,Guangdong, China
下载:  全 文 ( PDF ) ( 3338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅铋共晶(LBE)因其良好的物理性能和低化学活性,成为加速器驱动次临界系统(ADS)和铅基堆(LFR)冷却剂的优选材料,但高温下结构材料与LBE接触会引起结构材料性能的退化,而FeCrAl合金具有优良的抗高温性能、耐腐蚀性能和力学性能等,在作为ADS和LFR的重要候选结构材料上有很大的潜能。
近年来,针对高温液态LBE/Pb环境下FeCrAl系列合金的腐蚀行为及其机理,科研人员开展了大量的研究并取得了一系列成果。然而,因腐蚀现象影响因素众多,未能形成系统的FeCrAl合金腐蚀的评价机制,而且针对其不同条件下的腐蚀机理的研究也很欠缺。FeCrAl合金耐腐蚀性能的提高也是被关注的焦点。
氧浓度、温度、元素含量是影响FeCrAl合金腐蚀过程的关键因素,因此,近年来研究人员在宽温域(400~900 ℃)、氧浓度10-3%~10-8%(质量分数)范围内开展了具有针对性的实验研究和理论模拟,并绘制了耐LBE腐蚀的FeCrAl合金三元相图。研究结果表明,在合适的氧浓度、温度下,FeCrAl合金表面形成的致密、连续的氧化层成为材料耐LBE腐蚀的关键,也得出了在不同温度及元素含量情况下氧化层形成的条件边界图。此外,以FeCrAl(Y)为基础添加活性元素调制的第二代FeCrAl合金和在成熟材料(如316L、T91等)上制备FeCrAl系列合金涂层,也是提高结构材料耐腐蚀性能的主要途径。
本文首先简要介绍了FeCrAl合金材料的组分、结构、常规性能及其研发现状,然后对该材料在高温液态LBE/Pb中腐蚀实验研究进展进行了归纳综述,总结了氧浓度、温度、合金元素、涂层工艺对材料腐蚀过程的影响,以及腐蚀对材料力学性能的影响,探讨了该材料的LBE/Pb腐蚀机理、存在问题以及可能提高耐腐蚀性能的措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马良义
台鹏飞
王志光
庞立龙
申铁龙
姚存峰
李靖
关键词:  FeCrAl合金  LBE/Pb腐蚀  氧化铝层  腐蚀机理    
Abstract: Lead-bismuth eutectic (LBE) has become the preferred coolant material for accelerator driven subcritical system (ADS) and lead-cooled fast reactor (LFR) due to its good physical properties and low chemical activity. However, LBE at high temperature can cause degradation of structural materials properties. FeCrAl alloys, with excellent high temperature resistance, corrosion resistance and mechanical properties, can just play a promising role in structural materials.
Although a lot of research had been done about corrosion behaviors and mechanism of FeCrAl alloy in LBE, it failed to form a systematic evaluation method of FeCrAl alloy corrosion due to complex influencing factors. Furthermore, the detailed description of the corrosion mechanism of FeCrAl alloys under different conditions is lacking and the improvement of its corrosion resistance has attracted more attention as well.
Since oxygen concentration in LBE/Pb, environment temperature and element content are the key factors that affect the corrosion process of FeCrAl alloys, researchers recently have done numerous experimental studies and theoretical simulations in a wide temperature range (400—900 ℃) and oxygen concentration of 10-3%—10-8%(mass fraction). Based on a large amount of data, the ternary phase diagram has been drawn, where the composition range of the FeCrAl alloy resistant to LBE corrosion is identified. The results revealed that the formation of a dense and continuous oxide layer on the surface of the FeCrAl alloys was the key to the materials corrosion resistance at the proper oxygen concentration and temperature. The conditional boundary diagram of the oxide layer formation has also been drawn at different temperatures and element contents. Furthermore, two main ways have been proposed to improve the corrosion resistance of structural materials. One is theⅡ phase FeCrAl alloys modulated by adding trace elements based on FeCrAl(Y). The other is FeCrAl alloys coatings prepared on mature materials (such as 316L, T91, etc.).
This paper first briefly introduced elemental constituent, structure, conventional properties and development status of FeCrAl alloys with excellent LBE/Pb corrosion resistance. Then several important factors that can significantly affect LBE/Pb corrosion process, such as oxygen concentration in LBE/Pb, environment temperature, alloy elements and coatings preparation technique, were summed up based on the experimental studies. The effect of corrosion on the mechanical property, one of the most severe problems for FeCrAl alloys in high temperature liquid LBE/Pb, was mentioned. Subsequently, the mechanism of LBE/Pb corrosion-resistant of FeCrAl alloys, existing problems and possible measures to improve the corrosion resistance of the materials were discussed.
Key words:  FeCrAl alloys    LBE/Pb corrosion    Al2O3 scale    corrosion mechanism
发布日期:  2022-04-07
ZTFLH:  TL341  
基金资助: 国家自然科学基金面上项目(12075292);国家自然科学基金联合基金项目(U1832206);广东省自然科学基金面上项目(HNY20301GJT)
通讯作者:  zhgwang@impcas.ac.cn; panglilong@impcas.ac.cn   
作者简介:  马良义,现为中国科学院大学物理科学学院、中国科学院近代物理研究所硕士研究生,在王志光研究员的指导下进行研究学习。目前主要研究的方向为耐液态铅铋(LBE)腐蚀的涂层材料的制备及耐腐蚀机理研究。
王志光,中国科学院近代物理研究所先进核能中心主任,博士研究生导师,曾被评为杰出青年和甘肃省领军人才。主要研究方向为离子束与物质相互作用和先进核能材料筛选与性能评价。
庞立龙,理学博士,中国科学院近代物理研究所副研究员。目前主要从事材料中离子辐照效应、耐液态金属腐蚀涂层制备等研究。
引用本文:    
马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
MA Liangyi, TAI Pengfei, WANG Zhiguang, PANG Lilong, SHEN Tielong, YAO Cunfeng, LI Jing. Research Progress on Liquid LBE/Pb Corrosion of FeCrAl Alloys. Materials Reports, 2022, 36(7): 20100178-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100178  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20100178
1 Zou X Z, Nan H Q, Han L, et al. Foundry Technology, 2009, 30(4), 554(in Chinese).
邹兴政, 南宏强, 韩磊,等. 铸造技术, 2009, 30(4), 554.
2 Zhang J Y, Ding S R. Chinese Journal of Solid Mechanics, 2020, 41(6), 545(in Chinese).
张靖宇, 丁淑蓉.固体力学学报, 2020, 41(6), 545.
3 Gong X, Li R, Sun M Z, et al. Journal of Nuclear Materials, 2016, 482, 218.
4 Abderrahim H A, Bruyn D D, Eynde G V D, et al.Encyclopedia of nuclear physics and its applications. Wiley-VCH, Germany, 2013, pp. 689.
5 Bauer G S.Nuclear Instruments and Methods in Physics Research A, 2001, 463, 505.
6 Hojná A, Halodová P, Chocholoušek M, et al. Corrosion Reviews, 2020, 38(2), 183.
7 Hosemann P, Frazer D, Stergar E, et al. Scripta Materialia, 2016, 118, 37.
8 Zhang J S. Corrosion Science, 2009, 51(6), 1207.
9 Zhang J S, Li N. Journal of Nuclear Materials, 2007, 373(1-3), 351.
10 Van D B J, Hosemann P, Almazouzi A, et al. Journal of Nuclear Mate-rials, 2010, 398(1-3), 116.
11 Jianu A, Müller G, Weisenburger A, et al. Journal of Nuclear Materials, 2009, 394, 102.
12 Weeks J R. Nuclear Engineering and Design, 1971, 15, 363.
13 Soler L, Martín F J, Hernández F, et al. Journal of Nuclear Materials, 2004, 335(2), 174.
14 Yamaki E, Ginestar K, Martinelli L. Corrosion Science, 2011, 53(10), 3075.
15 Short M P, Ballinger R G, Hänninen H E. Journal of Nuclear Materials, 2013, 434(1-3), 259.
16 Chen G, Ju N, Lei Y C, et al. Progress in Nuclear Energy, 2020, 118, 103074.
17 Lyutyi E M. Soviet Materials Science, 1989, 24(5), 441.
18 Pan X L, Qiu L S. New Technology & New Process, 2019(12), 1(in Chinese).
潘晓龙,邱龙时.新技术新工艺, 2019(12), 1.
19 Qu H P, Lang Y P, Yao C F, et al. Materials Science and Engineering A, 2013, 562, 9.
20 Qiao Y J, Wang P, Qi W, et al. Journal of Alloys and Compounds, 2020, 828, 154310.
21 Rivlin V G, Raynor G V. International Metals Reviews, 1980, 25, 139.
22 He Y. Fundamental study on the solidification characteristics and high-temperature mechanical properties of high Al FeCrAl stainless steel. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
何杨. 高铝FeCrAl不锈钢凝固特性及高温力学性能基础研究. 博士学位论文,北京科技大学, 2019.
23 Zhang J Y, Ding S R. Materials Today Communications, 2020, 22, 100718.
24 Shi D W, Song J X, Liu Z, et al. Japanese Journal of Applied Physics, 2020, 59(4), 046003.
25 César A C S. In: High temperature corrosion fundamentals and enginee-ring, Wiley, Portugal, 2018, pp. 479.
26 Yamamoto Y, Gussev M N, Kim B, et al. In: Optimized properties on base metal and thin-walled tube of Generation II ATF FeCrAl, Oak Ridge, USA, 2015, pp. 24.
27 Yamamoto Y, Pint B A, Terrani K A, et al. Journal of Nuclear Mate-rials, 2015, 467, 703.
28 Hou P Y. Annual Review of Materials Research, 2008, 38(1), 275.
29 Yamaki-Irsawa E, Numata S, Takahashi M. Progress in Nuclear Energy, 2011, 53(7), 1066.
30 Fetzer R, Weisenburger A, Jianu A, et al. Corrosion Science, 2012, 55, 213.
31 Weisenburger A, Heinzel A, Müller G, et al. Journal of Nuclear Mate-rials, 2008, 376(3), 274.
32 Dai Y, Boutellier V, Gavillet D, et al. Journal of Nuclear Materials, 2012, 431(1-3), 66.
33 Fedirko V M, Eliseeva O I, Kalyandruk V I, et al. Materials Science, 1997, 33(2), 207.
34 Fedirko V M, Eliseeva O I, Kalyandruk V I, et al. Materials Science, 1997, 33 (3), 358.
35 Weisenburger A, Jianu A, Doyle S, et al. Journal of Nuclear Materials, 2013, 437(1-3), 282.
36 Cionea C, Abad M D, Aussat Y, et al. Solar Energy Materials and Solar Cells, 2016, 144, 235.
37 Del Giacco M, Weisenburger A, Jianu A, et al. Journal of Nuclear Materials, 2012, 421(1-3), 39.
38 Dömstedt P, Lundberg M, Szakalos P. Oxidation of Metals, 2019, 91, 511.
39 Dömstedt P, Lundberg M, Szakalos P. Journal of Nuclear Materials, 2020, 531, 152022.
40 Chen X, Haasch R, Stubbins J F. Journal of Nuclear Materials, 2012, 431(1-3), 125.
41 Lim J, Nam H O, Hwang I S, et al. Journal of Nuclear Materials, 2010, 407(3), 205.
42 Ejenstam J, Thuvander M, Olsson P, et al. Journal of Nuclear Materials, 2015, 457, 291.
43 Jianu A, Fetzer R, Weisenburger A, et al. Journal of Nuclear Materials, 2016, 470, 68.
44 Ejenstanm J, Halvarsson M, Weidow J, et al. Journal of Nuclear Mate-rials, 2013, 443(1-3), 161.
45 Yang Z, Pan J, Wang Z X, et al. Corrosion Science, 2020, 172, 108728.
46 Hayashi S, Maeda T. Oxidation of Metals, 2020, 93, 573.
47 Huang T H, Lu J G, Song P, et al. Corrosion Science, 2020, 168, 108580.
48 Popovic M P, Chen K, Shen H, et al. Acta Materialia, 2018, 151, 301.
49 Popovic M P, Yang Y, Bolind A M, et al. JOM, 2018, 70(8), 1471.
50 Gong X, Hu F, Chen J, et al. Journal of Nuclear Materials, 2020, 537, 152196.
51 Schroer C, Konys J. In: Physical chemistry of corrosion and oxygen control in liquid lead and lead-bismuth eutectic, Karlsruhe, Germany, 2007, pp.1.
52 Weeks J R.In: Fourth NASA-AEC Liquid Metal Corrosion Meeting. Cleveland, 1963, pp. 5.
53 Remy F N, Bouchacout M. Nuclear Engineering and Design, 1992, 1331(1), 23.
54 Tomaszewicz P, Wallwork G R. Oxidation of Metals, 1983, 20(3-4), 75.
55 Zhang Z G, Zhang X L, Sheng L, et al. The Open Corrosion Journal, 2009, 2, 37.
56 Airiskallio E, Nurmi E, Heinonen M H, et al. Corrosion Science, 2010, 52(10), 3394.
57 Liu F, Josefsson H, Svensson J E, et al. Materials at High Temperatures, 2005, 22(3-4), 521.
58 Wagner C. Corrosion Science, 1965, 5(11), 751.
[1] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[2] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[3] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[4] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[5] 曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
[6] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[7] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[8] 秦建伟, 罗丽珠, 帅茂兵. 金属铀的水蒸气腐蚀行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 17-24.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed