Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11162-11170    https://doi.org/10.11896/cldb.19040242
  金属与金属基复合材料 |
大气环境腐蚀下钢结构力学性能研究综述
曹琛1, 郑山锁1,2, 胡卫兵1,2, 张晓辉1, 刘毅1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学结构工程与抗震教育部重点实验室,西安 710055
Review of Research on Mechanical Properties of Steel Structure Under Atmospheric Environment Corrosion
CAO Chen1, ZHENG Shansuo1,2, HU Weibing1,2, ZHANG Xiaohui1, LIU Yi1
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Key Laboratory of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055,China
下载:  全 文 ( PDF ) ( 3261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢结构因质轻、强度高、建造方便、塑性及抗震性能好等优点越来越受到青睐。近几十年来,随着国内钢材产量及品种大幅提升,钢结构应用范围也越来越广,除传统的钢结构厂房外,钢结构也逐渐应用于高层、超高层及大跨度结构中。然而,钢结构有一个明显的缺点,即易腐蚀,暴露在大气环境中的钢结构,钢材表面会形成一种薄液膜,在干湿交替过程中对结构产生腐蚀。
   随着我国现代工业化进程的加快,环境问题日益突出,其中在富含SO2的酸性大气环境和富含Cl-的近海大气环境下钢材的腐蚀最为严重。钢材腐蚀不仅会造成巨大的经济损失,还会影响结构的安全稳定。钢材遭受腐蚀后,构件有效截面面积减小,强度和延性下降,不均匀腐蚀引起的锈坑会导致应力集中等,在动力荷载作用下,这些现象将引起钢材脆性断裂并影响疲劳强度,增加了钢结构风险事故发生的概率。
   大气环境腐蚀下钢结构性能的劣化已引起众多学者的关注。目前,国内外学者对钢材大气腐蚀的研究主要集中于:(1)钢材的大气腐蚀机理及影响因素;(2)不同大气腐蚀试验方法及其相关性;(3)钢材的大气腐蚀深度预测模型,目前虽已建立多种腐蚀深度预测模型,但要建立一种形式相对简单且精度高的预测模型仍需深入探讨;(4)大气腐蚀下钢材、钢构件的力学性能;(5)大气腐蚀下钢结构动态力学性能,此方面研究相对较少,目前国内外仍缺乏系统的报道。
   因此,为了明确大气环境(酸性和近海大气环境)腐蚀对钢结构性能的影响,本文对近50年国内外有关钢结构大气腐蚀的研究报道进行了评述,重点讨论了酸性、近海两种大气环境下,腐蚀对钢结构静态和动态力学性能的影响。首先分别详述了钢材在酸性(富含SO2)、近海 (富含Cl-)大气环境下的腐蚀机理,以及大气腐蚀的影响因素;其次总结了钢材大气腐蚀试验方法,大气腐蚀下钢结构力学性能的相关研究;最后讨论了当前有关钢结构大气腐蚀研究的一些重要问题,并展望了今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹琛
郑山锁
胡卫兵
张晓辉
刘毅
关键词:  大气腐蚀  钢结构  腐蚀机理  力学性能    
Abstract: Steel structureshave been widely applied because of its light weight, high strength, convenient construction, good plasticity and seismic performance. In recent decades, with the sharp increase in domestic steel production and variety, steel structures have not only been applied to traditional industrial plants, but also gradually applied to high-rise, super high-rise and long-span structures. However, steel structure has an obvious disadvantage, that is, it is easy to corrode, and the steel structures exposed to the atmospheric environment will form a thin liquid film on the surface of the steel, which will corrode the structure during the alternating wet and dry process.
With the acceleration of modern industrialization in China, environmental problems have become increasingly prominent, and steel corrosion is most severe in acidic atmospheres rich in SO2 and in offshore atmospheres rich in Cl-. Corrosion of steel not only causes huge economic losses, but also affects the safety and stability of the structures. Because of corrosion, the effective cross-sectional areas of the components decrease, the strength and ductility decrease, and the rust pits generated by the uneven corrosion will cause stress concentration, etc. When the dynamic load acts, these phenomena will cause brittle fracture of the steel and affect the fatigue strength, increasing the probability of steel structure risk.
The deterioration of steel structures performance under atmospheric environmental corrosion has attractedwide attention. At present, researches on atmospheric corrosion of steels by scholars at home and abroad mainly focus on: I. atmospheric corrosion mechanism and influencing factors of steels, Ⅱ. different atmospheric corrosion test methods and their correlation, Ⅲ. research on atmospheric corrosion depth prediction model of steels (Although a variety of models have been established at present, it is necessary to study a predictive model with relatively simple expression and high precision), Ⅳ. mechanical properties of steel and steel components under atmospheric corrosion, Ⅴ. the dynamic mechanical properties of steel structures under atmospheric corrosion (It still lack intensive study about this aspect).
Accordingly, in order to clarify the influence of atmospheric environment (acid and offshore atmospheric environment) corrosion on the steel structure performance, this article reviews the worldwide researches about atmospheric corrosion of steel structures in recent 50 years, and focuses on the effects of corrosion on the static and dynamic mechanical properties of steel structures under acidic and offshore atmospheric conditions. Firstly, the corrosion mechanism of steel in acidic (rich in SO2) and offshore (rich in Cl-) atmospheres and the influencing factors of atmospheric corrosion are described in detail. Secondly, the atmospheric corrosion test methods of steel and the related research work on the mechanical properties of steel structures under atmospheric corrosion are summarized. Finally, some important issues concerning the research of atmospheric corrosion of steel structures are discussed, and some suggestions for further research are proposed.
Key words:  atmospheric corrosion    steel structure    corrosion mechanism    mechanical properties
                    发布日期:  2020-05-13
ZTFLH:  TU528  
基金资助: 国家重点研发计划课题(2019YFC1509302);国家自然科学基金(51678475);西安市科技计划项目(2019113813CXSF016SF026);陕西省教育厅产业化项目(18JC020);陕西省自然科学基础研究计划-重点项目(2018JZ5002)
通讯作者:  wbh8008@sohu.com   
作者简介:  曹琛,2011年6月毕业于长安大学,获得硕士学位。现为西安建筑科技大学土木工程学院博士研究生,由郑山锁教授和胡卫兵教授联合培养。目前主要从事混凝土结构耐久性及抗震性能的研究。
郑山锁,西安建筑科技大学土木工程学院教授、博士研究生导师。1983年7月本科毕业于原西安冶金建筑学院本科工业与民用建筑专业;1990年12月毕业于该校结构工程专业,获硕士学位;2000年6月毕业于西安建筑科技大学结构工程专业,获博士学位;2000年10月—2003年2月西安交通大学工程力学博士后流动站从事研究工作。主要从事钢与混凝土组合结构、混凝土结构、钢结构及其抗震,建(构)筑物结构可靠性评估、震害预测等的研究工作。获省部级科学技术一、二等奖9项,获国家发明专利27项,制定企业标准1部,获国家软件著作权25项。发表学术论文320余篇,其中200余篇被SCI、EI收录;主编著作9部,参编国家规范1部、著作1部。
胡卫兵,西安建筑科技大学土木工程学院教授、博士研究生导师,空间结构研究所所长,陕西省振动工程学会副理事长,教育部高等学校力学基础课程教学指导委员会委员。1988年毕业于哈尔滨船舶工程学院土木工程系,获学士学位;1991毕业于西北工业大学飞行器设计专业,获硕士学位;1994年毕业于西北工业大学结构强度专业,获博士学位。研究方向:结构健康检测,结构振动及控制。主持和参加国家自然科学基金面上项目2项及省部级自然科学基金等项目10余项,获省部级科技进步三等奖2项,厅局级科技进步一等奖2项,在国内外学术会议及刊物发表学术论文50余篇,其中20多篇被EI、SCI摘录。
引用本文:    
曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
CAO Chen, ZHENG Shansuo, HU Weibing, ZHANG Xiaohui, LIU Yi. Review of Research on Mechanical Properties of Steel Structure Under Atmospheric Environment Corrosion. Materials Reports, 2020, 34(11): 11162-11170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040242  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11162
1 Wang Y J, Huang B Y, Wang Y G. Metal atmospheric corrosion and temporary protection, Chemical Industry Press, China,2007(in Chinese).
王一建, 黄本元, 王余高. 金属大气腐蚀与暂时性保护, 化学工业出版社, 2007.
2 Xu S H, Wang H, Xue N. Journal of Harbin Institute of Technology, 2016, 48(6), 157(in Chinese).
徐善华, 王皓, 薛南. 哈尔滨工业大学学报, 2016, 48(6), 157.
3 Zheng S S, Wang X F, Han Y Z. China Civil Engineering Journal, 2015, 48(8), 47(in Chinese).
郑山锁, 王晓飞, 韩言召. 土木工程学报, 2015, 48(8), 47.
4 Zheng S S, Zhang X H, Zhao X R. Engineering Mechanics, 2018, 35(12), 98(in Chinese).
郑山锁, 张晓辉, 赵旭冉.工程力学, 2018, 35(12), 98.
5 Zhang R. Investigation and analysis of corrosion performance of residential steel structures and corrosion prevention countermeasures. Master's Thesis, Tongji University, China, 2008 (in Chinese).
张锐. 住宅钢结构腐蚀性能调查分析与防腐对策.硕士学位论文, 同济大学, 2008.
6 Jones D A. Principles and prevention of corrosion, Macmillan, New York, 1992.
7 Bohnenkamp K, Burgmann G, Schwenk W. Stahl und Eisen, 1973, 93(22), 1054.
8 Hou W T, Liang C F. Corrosion, 1999, 55(1), 65.
9 Liang C F. Journal of Electrochemistry, 2001, 7(2), 215(in Chinese).
梁彩凤.电化学, 2001, 7(2), 215.
10 Chen H H. Corrosion science of metal, Beijing Institute of Technology Press, China, 1996(in Chinese).
陈鸿海. 金属腐蚀学, 北京理工大学出版社,1996.
11 Allam I M, Arlow J S, Saricimen H. Corrosion Science, 1991, 32(4), 417.
12 Ma Y, Li Y, Wang F. Corrosion Science, 2009, 51(5), 1006.
13 Mendoza A R, Corvo F. Corrosion Science, 1999, 41(1), 75.
14 Vassie P R, Mckenzie M. Corrosion Science, 1985, 25(1), 1.
15 Cox A, Lyon S B. Corrosion Science, 1994, 36(7), 1167.
16 Fabis P, Brown C, Rockett T, et al. Oxidation of Metals, 1981, 16(5), 399.
17 Corvo F, Haces C, Betancourt N, et al. Corrosion Science, 1997, 39, 823.
18 Liang C F, Hou W T. Corrosion Science and Protection Technology, 1995, 7(3), 183(in Chinese).
梁彩凤, 侯文泰.腐蚀科学与防护技术,1995,7(3), 183.
19 Liang C F, Hou W T. Journal of Chinese Society for Corrosion and Protection, 2005, 25(1) (in Chinese).
梁彩凤, 侯文泰.中国腐蚀与防护学报, 2005, 25(1), 1.
20 Wang C, Cao G W, Pan C, et al. Journal of Chinese Society for Corrosion and Protection, 2016, 36(1), 39(in Chinese).
汪川, 曹公旺, 潘辰, 等. 中国腐蚀与防护学报, 2016, 36(1), 39.
21 Chen H L, Wei Y. Corrosion & Protection, 2006, 27(6), 284(in Chinese).
陈惠玲, 魏雨. 腐蚀与防护, 2006, 27(6), 284.
22 Liu Y E, Lin C, Zhao Q. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1), 51(in Chinese).
刘月娥,林翠,赵晴. 中国腐蚀与防护学报, 2010, 30(1), 51.
23 Lin C, Zhao Q, Liu Y E, et al. Acta Metallurgica Sinica, 2010, 46(3), 358(in Chinese).
林翠, 赵晴, 刘月娥, 等. 金属学报, 2010, 46(3), 358.
24 Cao G W, Wang Z Y, Liu Y W, et al. Equipment Environmental Engineering, 2015, 12(4), 6(in Chinese).
曹公望, 王振尧, 刘雨薇, 等. 装备环境工程, 2015, 12(4), 6.
25 Wang J J, Guo X D, Zheng W L, et al. Corrosion & Protection, 2002, 23(7), 288(in Chinese).
王建军, 郭小丹, 郑文龙, 等. 腐蚀与防护, 2002, 23(7), 288.
26 Li Q X, Wang Z Y, Han W, et al. Acta Physico-Chimica Sinica, 2008, 24(8), 1459(in Chinese).
李巧霞, 王振尧,韩薇,等. 物理化学学报, 2008, 24(8), 1459.
27 Evens U R. Corrosion Science, 1969, 9, 813.
28 Zhang L, Wang Z Y, Zhao C Y, et al. Equipment Environmental Engineering, 2014, 11(1), 1(in Chinese).
张琳, 王振尧, 赵春英,等. 装备环境工程, 2014, 11(1), 1.
29 Syed S. Corrosion Science, 2008, 50(6), 1779.
30 Wang Z Y, Yu G C, Han W. Corrosion Science and Protection Technology, 2004, 16(2), 70(in Chinese).
王振尧, 于国才, 韩薇. 腐蚀科学与防护技术, 2004, 16(2), 70.
31 Corvo F, Minotas J, Delgado J, et al. Corrosion Science, 2005, 47 (4), 883.
32 Ma Y, Li Y, Wang F. Corrosion Science, 2009, 51(5), 997.
33 Ericsson R. Werkstoffe Korrosion, 1978, 29, 400.
34 Thomson G E, Johnson J B. Corrosion, 1987, 43(12), 719.
35 Cai J P, Zheng Y P, Liu S R. Journal of Chinese Society for Corrosion and Protection, 1996, 16(4), 303(in Chinese).
蔡健平, 郑逸苹, 刘寿荣. 中国腐蚀与防护学报, 1996, 16(4), 303.
36 Chen W J, Hao L, Dong J H, et al. Acta Metallurgica Sinica, 2015, 51(2), 191 (in Chinese).
陈文娟, 郝龙, 董俊华, 等. 金属学报, 2015, 51(2), 191.
37 Guo M X, Pan C, Wang Z Y, et al. Acta Metallurgica Sinica, 2018, 54(1), 65(in Chinese).
郭明晓, 潘晨, 王振尧, 等. 金属学报, 2018, 54(1), 65.
38 Oh S J, Cook D C, Townsend H E. Corrosion Science, 1999, 41(9), 1687.
39 Guo J K, Yu J S, Peng X, et al. Surface Technology, 2014, 43(4), 68(in Chinese).
郭军科, 于金山, 彭翔, 等. 表面技术, 2014, 43(4), 68.
40 Graedel T E, Frankenthal R P. Journal of the Electrochemical Society, 1990, 137 (8), 2385.
41 Alcántara J, Chico B, Díaz I, et al. Corrosion Science, 2015, 97(5), 74.
42 Qu Q, Yan C W, Zhang L, et al. Journal of Chinese Society for Corrosion and Protection, 2003, 23(3), 163(in Chinese).
屈庆, 严川伟, 张蕾, 等.中国腐蚀与防护学报. 2003, 23(3), 163.
43 Ye T, Zhao D W, Li J, et al. Journal of Chongqing University, 2005, 27(1),80(in Chinese).
叶堤, 赵大为, 李娟, 等. 重庆大学学报, 2005, 27(1),80.
44 Yu G C, Wang Z Y, Chen H C. Corrosion & Protection, 2000, 21(6), 243(in Chinese).
于国才,王振尧, 陈鸿川. 腐蚀与防护, 2000, 21(6), 243.
45 Larrabee C P, Coburn S K. In: Procedure1st International Congress Metallic Corrosion. Butterworth, London, 1962, pp. 276.
46 Shastry, Friel J J, Townsend H E. In:Degradation of Metals in the Atmosphere. ASTMS TP 965, West Conshohocken, 1988, pp. 5.
47 Knotkova D, Gullman J, Holler P. In: Procedure 10th International Congress Metallic Corrosion. Oxford and IDH, Madras, India, 1987, pp. 167.
48 Wei F I. British Corrosion Journal, 1991, 26 (3), 209.
49 Hou W T, Yu J D, Liang C F. Corrosion Science and Protection Technology, 1994, 6(2), 137(in Chinese).
侯文泰, 于敬敦, 梁彩凤. 腐蚀科学与防护技术, 1994, 6(2), 137.
50 Yan J, Xiong C Q. Journal of Chinese Society for Corrosion and Protection, 1986, 6(1), 1(in Chinese).
严谨, 熊长清.中国腐蚀与防护学报, 1986, 6(1), 1.
51 Zhang Q C, Wu J S, Chen J G, et al. Materials Science & Engineering, 2001,19(2), 12(in Chinese).
张全成, 吴建生, 陈家光,等. 材料科学与工程, 2001,19(2), 12.
52 Zhang Q C, Wu J S. Materials Reports, 2000, 14(7), 12(in Chinese).
张全成, 吴建生. 材料导报, 2000, 14(7), 12.
53 Wang J R, Zhang Z, Zhu J G, et al. Journal of Aeronautical Materials, 2004, 24(1), 41(in Chinese).
王景茹, 张峥, 朱立群, 等. 航空材料学报, 2004, 24(1), 41.
54 Sun Z H, Li J G, Li M Z. Journal of Materials Engineering, 1995(12), 41(in Chinese).
孙志华, 李金桂, 李牧铮. 材料工程, 1995(12), 41.
55 Dong J H, Ke W. Journal of Electrochemistry, 2009, 15(2), 170(in Chinese).
董俊华, 柯伟.电化学, 2009, 15(2), 170.
56 Wei R Y. Journal of Fujian College of Architecture & C.E., 2001, 3(3/4), 37(in Chinese).
魏瑞演. 福建建筑高等专科学校学报, 2001, 3(3/4), 37.
57 Xu X P, Huang D S, Pan D M. Oil Field Equipment, 1999, 28(4), 19(in Chinese).
徐兴平, 黄东升, 潘东民. 石油矿场机械, 1999, 28(4), 19.
58 Nakai T, Matsushita H, Yamamoto N. Marine Structures, 2004, 17(8), 612.
59 Almusallam A A. Construction & Building Materials, 2001, 15(8), 361.
60 Chen L. Study on the deterioration properties of corroded steel. Master's Thesis, Xi'an University of Architecture and Technology, China, 2010 (in Chinese).
陈露. 锈蚀后钢材材料性能退化研究. 硕士学位论文, 西安建筑科技大学, 2010.
61 Shen J D. Experimental study on corroded reinforced concrete beams in atmospheric environment. Master's Thesis, Hohai University, China, 2003 (in Chinese).
沈德建. 大气环境锈蚀钢筋混凝土梁试验研究. 硕士学位论文, 河海大学, 2003.
62 Li H, Zhang Y, Zhang L. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2006, 4(27), 114(in Chinese).
李昊, 张园, 张丽. 内蒙古农业大学学报(自然科学版), 2006, 4(27), 114.
63 Shi W Z, Tong L W, Chen Y Y, et al. Journal of Building Structures, 2012, 33(7), 53(in Chinese).
史炜洲, 童乐为, 陈以一, 等. 建筑结构学报, 2012, 33(7), 53.
64 Xu S H, Wang H, Su L. Materials for Mechanical Engineering, 2016, 40(5), 86(in Chinese).
徐善华, 王皓,苏磊. 机械工程材料, 2016, 40(5), 86.
65 Pan D S. Corrosion of H-steel components bending load performance. Master's Thesis, Xi'an University of Architecture and Technology, China, 2009 (in Chinese).
潘典书. 锈蚀H型钢构件受弯承载性能研究. 硕士学位论文, 西安建筑科技大学, 2009.
66 Xu S H, Ren S P, Cui H P, et al. Journal of Experimental Mechanics, 2014, 29(4), 506(in Chinese).
徐善华, 任松波, 崔焕平,等. 实验力学, 2014, 29(4), 506.
67 Sarveswaran V, Smith J W. Structural Engineering, 1999, 77(6), 17.
68 Bai Y. Experimental study and theoretical analysis on the bending beha-vior of corroded channel steel. Master's Thesis, Xi'an University of Architecture and Technology, China, 2009 (in Chinese).
白烨.锈蚀槽钢受弯性能试验研究与理论分析.硕士学位论文, 西安建筑科技大学, 2009.
69 Xu S H, Qiu B. Journal of Experimental Mechanics, 2013, 28(4), 536(in Chinese).
徐善华, 邱斌. 实验力学, 2013, 28(4), 536.
70 Beaulieu L V, Legeron F, Langlois S. Journal of Constructional Steel Research, 2010, 66(11), 1366.
71 Zhang H. Experimental study and theoretical analysis on the buckling behavior of the corroded H-shape steel. Master's Thesis, Xi'an University of Architecture and Technology, China, 2011 (in Chinese).
张华.锈蚀H型钢柱压弯性能试验研究与理论分析.硕士学位论文, 西安建筑科技大学, 2011.
72 Zhong H W. Corrosion of H-steel components eccentric compression performance. Master's Thesis, Xi'an University of Architecture and Technology, China, 2010 (in Chinese).
钟宏伟.锈蚀H型钢构件偏心受压性能研究.硕士学位论文, 西安建筑科技大学, 2010.
73 Takahashi K, Ando K, Hisatsune M, et al. Nuclear Engineering and Design, 2007, 237 (4), 335.
74 Kong Z Y. Study on the degradation of fatigue properties for corrosion steel specimens by test. Master's Thesis, Xi'an University of Architecture and Technology, China, 2010 (in Chinese).
孔正义. 腐蚀钢构件疲劳性能退化试验研究.硕士学位论文, 西安建筑科技大学, 2010.
75 Zhao Z X. Detection, safety assessment and reuse for classical gas tank as a historical relic under protection. Master's Thesis, Tongji University, China, 2006 (in Chinese).
赵贞欣.作为文物保护的经典煤气柜检测、安全评估和再利用.硕士学位论文, 同济大学, 2006.
76 Li Y J. Sci-Tech Information Development & Economy, 2007, 17(14), 193(in Chinese).
李永杰. 科技情报开发与经济, 2007, 17(14), 193.
77 Zhang C T, Fan W L, Li Z L. Engineering Mechanics, 2014, 31(11), 53(in Chinese).
张春涛, 范文亮, 李正良. 工程力学, 2014, 31(11), 53.
78 Yu D D. Experimental and theoretical analysis on seismic behavior of corroded steel frame joints in acidic atmosphere. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
余冬冬. 酸性大气环境锈损钢框架节点抗震性能试验及理论研究. 硕士学位论文, 西安建筑科技大学, 2017.
79 Zheng S S, Zhang X H, Wang X F, et al. China Civil Engineering Journal, 2016, 49(4), 69(in Chinese).
郑山锁, 张晓辉, 王晓飞, 等. 土木工程学报, 2016, 49(4), 69.
80 Xu Q, Zheng S S, Li X S. Journal of Zhejiang University (Engineering Science), 2018, 52(12), 1(in Chinese).
徐强, 郑山锁, 李晓昇. 浙江大学学报(工学版), 2018, 52(12), 1.
81 Zheng S S, Zhang X H, Huang W Z, et al. Engineering Mechanics, 2018, 35(7),62(in Chinese).
郑山锁, 张晓辉, 黄威曾, 等. 工程力学, 2018, 35(7),62.
82 Zheng S S, Zhang X H, Wang X F, et al. Engineering Mechanics, 2016, 33(10), 145(in Chinese).
郑山锁, 张晓辉, 王晓飞, 等.工程力学, 2016, 33(10), 145.
83 Zheng S S, Wang X F, Sun L F, et al. Journal of Building Structures, 2015, 36(10), 20(in Chinese).
郑山锁, 王晓飞, 孙龙飞, 等.建筑结构学报, 2015, 36(10), 20.
84 Zheng S S, Zuo Y, Zhang X H, et al. Engineering Mechanics, 2017, 34(9), 73(in Chinese).
郑山锁, 左英, 张晓辉, 等. 工程力学, 2017, 34(9), 73.
85 Zheng S S, Shi L, Zhang X H, et al. Engineering Mechanics, 2017, 34(11), 77(in Chinese).
郑山锁, 石磊, 张晓辉, 等.工程力学, 2017, 34(11), 77.
86 Zheng S S, Cheng Y, Wang X F, et al. Earthquake Engineering and Engineering Dynamics, 2014, 34(6), 207(in Chinese).
郑山锁, 程洋, 王晓飞, 等. 地震工程与工程振动, 2014, 34(6), 207.
87 Zheng S S, Dai K Y, Han C W, et al. Journal of Vibration and Shock, 2015, 34(7), 18(in Chinese).
郑山锁, 代旷宇, 韩朝伟, 等. 振动与冲击, 2015, 34(7), 18.
88 Zheng S S, Tian J, Han Y Z, et al. China Earthquake Engineering Journal, 2014, 36(1), 1(in Chinese).
郑山锁, 田进, 韩言召, 等. 地震工程学报, 2014, 36(1), 1.
89 Zheng S S, Shi L, Zheng J, et al. China Earthquake Engineering Journal, 2016, 38(5),673(in Chinese).
郑山锁, 石磊, 郑捷, 等. 地震工程学报, 2016, 38(5),673.
90 Zheng S S, Dai K Y, Sun L F, et al. China Earthquake Engineering Journal, 2015, 37(2), 291(in Chinese).
郑山锁, 代旷宇, 孙龙飞, 等. 地震工程学报, 2015, 37(2), 291.
91 Zheng S S, Shi L, Zhou Y, et al. China Earthquake Engineering Journal, 2018, 40(6), 1211(in Chinese).
郑山锁, 石磊, 周炎, 等. 地震工程学报, 2018, 40(6), 1211.
92 Zheng S S, Wang X F, Han Y Z. Engineering Mechanics, 2016, 33(7), 129(in Chinese).
郑山锁, 王晓飞, 韩言召. 工程力学, 2016, 33(7), 129.
93 Zheng S S, Wang X F, Cheng Y, et al. Journal of Vibration and Shock, 2015, 34(3), 144(in Chinese).
郑山锁, 王晓飞, 程洋, 等. 振动与冲击, 2015, 34(3), 144.
94 Zheng S S, Zhang X H, Wang X F, et al. World Earthquake Enginee-ring, 2016, 32(4), 266(in Chinese).
郑山锁, 张晓辉, 王晓飞, 等. 世界地震工程, 2016, 32(4), 266.
95 Tian J. Seismic fragility analysis of steel frame structures considering age under urban atmospheric environment. Master's Thesis, Xi'an University of Architecture and Technology, China, 2014 (in Chinese).
田进. 酸性大气环境下城市多龄期钢框架地震易损性分析.硕士学位论文,西安建筑科技大学,2014.
96 Cheng Y. The seismic performance and vulnerability research of corroded steel frame structure in acidic air environment. Master's Thesis, Xi'an University of Architecture and Technology, China, 2015 (in Chinese).
程洋. 酸性大气环境下锈蚀钢框架结构抗震性能及地震易损性研究. 硕士学位论文, 西安建筑科技大学, 2015.
97 Han Y Z. Study on seismic damage model of multi-aged steel frame members & seismic fragility analysis of multi-aged steel. Master's Thesis, Xi'an University of Architecture and Technology, China, 2014 (in Chinese).
韩言召. 城市多龄期钢框架构件地震损伤模型及结构地震易损性研究. 硕士学位论文, 西安建筑科技大学, 2014.
98 Sun L B. Study on seismic damage performance & fragility of in-service steel frame structure under offshore atmospheric. Master's Thesis, Xi'an University of Architecture and Technology, China, 2015 (in Chinese).
孙乐彬. 近海大气环境下在役钢框架结构地震损伤性能及易损性研究. 硕士学位论文, 西安建筑科技大学, 2015.
99 Tang Q H. Corrosion Science and Protection Technology, 1995, 7(3), 210(in Chinese).
唐其环. 腐蚀科学与防护技术, 1995, 7(3), 210.
100 Ma X Y, Qu Z Y, Li C R. Corrosion Science and Protection Technology, 2002, 14(1), 52(in Chinese).
马小彦, 屈祖玉, 李长荣. 腐蚀科学与防护技术, 2002, 14(1), 52.
101 Deng Y C, Li Z N, Zhang Y N. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1), 74(in Chinese).
邓杨晨, 郦正能, 章怡宁. 北京航空航天大学学报, 2002, 28(1), 74.
102 Damborenea J D, Conde A. British Corrosion Journal, 1995, 30(4), 292.
103 Dra$\hat{z}$ic D M, Va$\hat{s}$$\hat{c}$i$\hat{z}$, V. Corrosion Science, 1989, 29(10), 1197.
104 Zeng J J, Zhou X J, Wu J, et al. Corrosion Science and Protection Technology, 2015, 27(1), 90(in Chinese).
曾佳俊, 周学杰, 吴军,等. 腐蚀科学与防护技术, 2015, 27(1), 90.
105 Zhou L L. Marine Sciences, 1985, 9(5), 24(in Chinese).
周玲玲. 海洋科学, 1985, 9(5), 24.
106 Mou X L, Tian Y E, Wang X H. Environmental Technology, 2001(4), 14(in Chinese).
牟献良, 田月娥, 汪学华. 环境技术, 2001(4), 14.
107 Boelen B, Schmitz B, Defourny J, et al. Corrosion Science, 1993, 34(11), 1923.
108 James M. Journal of Corrosion Science & Engineering, 1999, 9(2), 15.
[1] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[2] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[5] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[6] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[7] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[8] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[9] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[10] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[11] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[12] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[13] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[14] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[15] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed