Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4118-4125    https://doi.org/10.11896/cldb.18100211
  金属与金属基复合材料 |
飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究
黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均
海军航空大学青岛校区,青岛 266041
Study on Comparison of Multi-metal Coupled Corrosion Behavior Under the State of Atmosphere and Solution and Equivalent Conversion Calculation
HUANG Hailiang, CHEN Yueliang, ZHANG Yong, BIAN Guixue, WANG Chenguang, WU Xingjun
Naval Aviation University (Qingdao Campus), Qingdao 266041, China
下载:  全 文 ( PDF ) ( 5796KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究改进了薄液膜测厚装置与电化学测量装置,搭建了溶液电化学测量平台,得到了飞机材料体系中7050铝合金、Aermet100高强钢、1Cr18Ni9Ti不锈钢和QA110-4-4铜合金极化曲线及由它们构成的四电极体系中各电极表面的电偶电流;分别构建基于二次电流分布和壳电流分布的Comsol仿真模型,得到了溶液状态下和100 μm液膜下四电极体系的电位和电流密度分布;将四种金属放入溶液状态和大气状态下得到的腐蚀形貌与仿真得到的电位分布进行了对比分析,并对四电极体系中各电极表面进行局部电流密度的面积分,计算得到各电极表面的电偶电流,与测试得到的电流值进行了比较。结果表明:四电极体系中各电极表面电偶电流仿真值与测量值误差在10%以内,液膜状态下多电极表面电位分布区间要远远大于溶液状态下,对比分析腐蚀形貌与仿真电位分布,可以看出仿真得到的表面电位分布高于自腐蚀电位的电极且均出现不同程度的腐蚀损伤,而对低于自腐蚀电位的电极表面腐蚀不明显,证明了模型对电位分布预测的准确性;Aermet100钢在溶液和100 μm液膜下出现极性反转现象,在液膜状态下Aermet100钢与7050铝合金作为多电极体系阳极,存在一定竞争关系,使得液膜状态下铝合金腐蚀坑数量和表面电偶电流要小于溶液状态下,铜合金和不锈钢在四电极体系中无论液膜状态还是溶液状态均充当阴极,极性不发生改变。根据腐蚀损伤等效原则,分别计算了溶液状态和液膜状态下不同面积比7050铝合金和Aermet100高强钢的折算系数,这对飞机环境适应性考核广泛采用的加速环境谱中折算系数的选取有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄海亮
陈跃良
张勇
卞贵学
王晨光
吴省均
关键词:  当量折算  大气腐蚀  薄液膜  仿真预测  多电极耦合    
Abstract: The thin liquid film thickness measurement and electrochemical measurement device were improved, and the solution electrochemical mea-surement platform was built. The polarization curves of 7050 aluminum alloy, Aermet100 high strength steel, 1Cr18Ni9Ti stainless steel and QA110-4-4 copper alloy in the aircraft material system were measured. The galvanic current of each electrode surface in the four-electrode system is constructed. The Comsol simulation model based on the secondary current distribution and the shell current distribution is constructed respectively, and the potential and current density distribution under the solution state and 100 μm liquid film are obtained. The relationship between corrosion morphology and simulated potential distribution under the state of atmosphere and solution was compared and analyzed. The galvanic current was obtained by calculating the local current area of each electrode surface, and compared with the current value obtained by the test. The potential distribution of the multi-electrode surface in the liquid film state is much larger than that in the solution state. Comparing the corrosion morphology and the simulated potential distribution, it can be seen that the surface of electrode has different degrees of corrosion damage,whose simulated surface potential distribution is higher than its self-corrosion potential, but other surface of electrode whose surface potential distribution is below the self-corrosion potential is not obvious, which proves the accuracy of the model for potential distribution prediction. Both Aermet 100 steel and 7050 aluminum alloy act as the anodes of multi-electrode system under the condition of thin liquid film, and they have a competitive relationship. Therefore, the number of corrosion pits and surface galvanic current of aluminum alloy under the liquid film state are lower than those under the solution state. Copper alloy and stainless steel act as cathodes in the multi-electrode system regardless of liquid film state or solution state, and the polarity does not change. According to the equivalent principle of corrosion damage, the conversion coefficients of different area ratios of 7050 aluminum alloy and Aermet100 high strength steel under solution state and liquid film state are calculated. It has certain reference va-lue for the selection of the conversion coefficient in the accelerated environmental spectrum widely used in aircraft environmental adaptability assessment.
Key words:  equivalent conversion    atmospheric corrosion    thin liquid film    simulation prediction    multi-electrode coupling
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG172.2  
  V252  
基金资助: 国家自然科学基金(51375490)
通讯作者:  cyl0532@sina.com   
作者简介:  黄海亮,2016年3月至今博士就读于海军航空大学青岛校区,主要从事飞机腐蚀防护与强度设计,在SCI、EI期刊上发表多篇腐蚀仿真方面的文章;陈跃良,海军航空大学青岛校区教授、博士研究生导师,主持完成国家自然科学基金、国防973及军内科研项目20余项,出版专著2部,军用标准8项,主要从事飞机结构强度和腐蚀防护,在国内外重要期刊发表文章100多篇。
引用本文:    
黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
HUANG Hailiang, CHEN Yueliang, ZHANG Yong, BIAN Guixue, WANG Chenguang, WU Xingjun. Study on Comparison of Multi-metal Coupled Corrosion Behavior Under the State of Atmosphere and Solution and Equivalent Conversion Calculation. Materials Reports, 2020, 34(4): 4118-4125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100211  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4118
1 Bian G X, Chen Y L, Zhang Y, et al. Equipment Environmental Engineering, 2018(5),54(in Chinese).
卞贵学, 陈跃良, 张勇,等. 装备环境工程, 2018 (5),54.
2 DeRose J A. Aluminium alloy corrosion of aircraft structures: modelling and simulation. WIT Press, 2013.
3 Chen Y L, Huang H L, Zhang Y, et al. Materials Review A:Review Papers, 2018, 32 (5),1571(in Chinese).
陈跃良, 黄海亮, 张勇,等.材料导报:综述篇, 2018, 32(5),1571.
4 Wang C G,Chen Y L, Zhang Y, et al. Journal of Aeronautical Materials, 2017, 37(1),59(in Chinese).
王晨光, 陈跃良, 张勇,等. 航空材料学报, 2017, 37(1),59.
5 Steen N V D, Simillion H, Dolgikh O, et al. Electrochimica Acta, 2016, 187,714.
6 Liu W T,Li Y H. Evaluation technology of calendar life system for aircraft structure, Aeronautical Industry Press,China,2004(in Chinese).
刘文珽, 李玉海.飞机结构日历寿命体系评定技术,航空工业出版社,2004.
7 Chen Y L, Wang Z F, Bian G X, et al. Acta Aeronautica et Astronautica Sinica, 2017, 38(3),260(in Chinese).
陈跃良, 王哲夫, 卞贵学,等. 航空学报, 2017, 38(3),260.
8 Chen Y L, Zhao H J, Bian G X, et al.Acta Aeronautica et Astronautica Sinica, 2017, 38(12),314(in Chinese).
陈跃良, 赵红君, 卞贵学,等.航空学报, 2017, 38(12),314.
9 Chen Y L, Huang H L, Bian G X, et al.Acta Aeronautica et Astronautica Sinica, 2018, 39(6),42175(in Chinese).
陈跃良, 黄海亮, 卞贵学,等.航空学报, 2018,39(6),42175.
10 Palani S, Hack T, Deconinck J, et al. Corrosion Science, 2014, 78(1),89.
11 Liao X, Cao F, Zheng L, et al. Corrosion Science, 2011, 53(10),3289.
12 Dolgikh O, Bastos A C, Oliveira A, et al. Corrosion Science, 2016, 102,338.
13 Zhang T, Chen C, Shao Y, et al. Electrochimica Acta, 2008, 53(27),7921.
14 Zhou H R, Li X G, Ma J, et al. Materials Science & Engineering B, 2009, 162(1),1.
15 Song L, Ma X, Chen Z, et al. Corrosion Science, 2014, 87(1),427.
16 Simillion H, Steen N V D, Terryn H, et al. Electrochimica Acta, 2016, 209,149.
17 Pan Y, Wu G, Cheng X, et al. Corrosion Science, 2015, 98,672.
18 Murer N, Oltra R, Vuillemin B, et al. Corrosion Science, 2010, 52(1),130.
19 Hu Z J,An Z J,Zhu Z H,et al. Corrosion & Protection, 2018, 39(3),184(in Chinese).
胡志江, 安子军, 朱志华,等.腐蚀与防护, 2018, 39(3),184.
20 Deshpande K B. Corrosion Science, 2012, 62(9),184.
21 Hong Y, Li Z, Qiao G, et al. Construction and Building Materials, 2017, 157, 416.
22 Deshpande K B. Corrosion Science, 2010, 52(9),2819.
[1] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[2] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[3] 陈跃良,黄海亮,张 勇,卞贵学,王晨光,王安东. 不同液膜厚度下电偶腐蚀当量折算研究[J]. 《材料导报》期刊社, 2018, 32(9): 1571-1576.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed