Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2272-2280    https://doi.org/10.11896/cldb.18040166
  金属与金属基复合材料 |
载流摩擦磨损研究现状及展望
惠阳,刘贵民,闫涛,杜林飞,周雳
陆军装甲兵学院装备保障与再制造系,北京 100072
Research Status and Prospect of Current-carrying Friction and Wear
HUI Yang, LIU Guimin, YAN Tao, DU Linfei, ZHOU Li
Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072
下载:  全 文 ( PDF ) ( 14536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电气化铁路、航天航空、军事装备等领域的发展,对载流摩擦磨损理论及重点技术的研究提出了迫切需求。如国产高铁“和谐号”和“复兴号”的最高运行速度均已突破400 km/h,但大幅提速会导致弓网系统载流量倍增、离线率提高,从而严重影响弓网系统寿命;电磁轨道炮作为一种新型概念武器,是全球军事研究的热点,在高速、大载流的工况下也会产生高速刨削、高速摩擦磨损以及转捩与电弧烧蚀等失效问题。因此,深入系统地研究载流摩擦学有利于解决实际中存在的问题,特别是对研制新型耐磨、耐烧蚀材料具有重要意义。
载流摩擦磨损作为电接触系统与摩擦系统共同耦合作用的结果,早在20世纪20年代就有国外学者开始进行相关研究。初期实验多以铜或铜合金为摩擦副材料,探究电流、载荷、滑动速度、电弧对载流摩擦磨损性能的影响规律是载流摩擦磨损研究的典型工作之一。现阶段的研究内容已由传统的摩擦系数、磨损率、表面形貌逐步发展到接触的电阻变化、表面温升的影响、电弧侵蚀的定量分析等方面。
近几年,基于前期大量实验数据积累,研究人员发现载流摩擦副的表面温升和磨损量受电流、载荷、滑动速度影响,并存在函数关系。国内外学者已成功采用ANSYS、COMSOL等有限元分析软件对弓网系统、电磁轨道炮温度场进行了仿真预测,有效实现了摩擦热、焦耳热与电弧热的耦合,为延长设备使用寿命和解决失效问题提供了科学依据。同时也通过数理统计方法建立了磨损量预测模型,可通过预测函数更为系统地研究载流摩擦磨损规律。随着研究手段的丰富,研究人员也开始结合磨痕表面、亚表面和磨屑形貌成分深入地研究了载流摩擦磨损机理,并在此基础上研制了满足载流摩擦工况需求的碳基复合材料、梯度自润滑材料等。
本文综述了载流摩擦磨损的基本特征,阐述了工作参数对载流摩擦磨损性能的影响,重点对载流摩擦磨损中电弧产生机理及影响因素进行了分析,并对载流摩擦磨损温度场及磨损量的仿真预测研究成果进行了归纳,总结了载流摩擦中的摩擦磨损机理和减摩抑弧方面的研究进展。最后,对目前载流摩擦研究中存在的问题进行了梳理并提出了改进方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠阳
刘贵民
闫涛
杜林飞
周雳
关键词:  载流摩擦磨损  电弧  摩擦磨损机理  仿真预测  减摩抑弧    
Abstract: With the development of electrified railway, space flight and aviation, military equipment and other fields, there is an urgent need for the research of current-carrying friction and wear theory and key technologies. For example, the maximum running speeds of the domestic high-speed railway “China Railway High-speed” and “Fuxing bullet trains” have exceeded 400 km/h, but a large increase in the speed will lead to a doubling of the current-carrying capacity of the pantograph-catenary system and an increase in the contact loss rate, thus seriously affecting the life of the pantograph-catenary system. As a new concept weapon, the electromagnetic orbital gun is a hotspot in global military research, and high-speed planing and high speed friction and wear, transition and arc ablation will also occur under high speed and high current carrying working conditions. Therefore, a thorough and systematic study of current-carrying tribology is conducive to solving practical problems, especially of great significance for the development of new wear-resistant and ablative materials.
Current-carrying friction and wear, as a result of the mutual coupling between electrical contact system and friction system, was studied by foreign scholars as early as the 1920s. In the initial experiments, copper or copper alloys were used as friction auxiliary materials. It is one of the typical work of current-carrying friction and wear research to explore the influence of current, load, sliding speed and arc on current-carrying friction and wear performance. At present, the research content has gradually developed from the traditional friction coefficient, wear rate and surface morphology to the contact resistance change, the influence of surface temperature rise, the quantitative analysis of arc erosion and so on.
In recent years, based on the accumulation of a large number of experimental data on the previous stage, researchers have found that the surface temperature rise and wear extent of current-carrying friction auxiliary materials are affected by current, load and sliding speed, and there is a functional relationship between them. Scholars at home and abroad have successfully used finite element analysis software such as ANSYS and COMSOL to simulate and predict the temperature field of pantograph-catenary system and electromagnetic gun track, effectively realizing the coupling of friction heat, Joule heat and arc heat, providing a scientific basis for prolonging the service life of equipment and solving the practical problems. At the same time, the wear extent prediction model is established by mathematical statistics method, and the law of current-carrying friction and wear can be studied more systematically by the prediction function. With the enrichment of research methods, researchers began to study the mechanism of current-carrying friction and wear in depth by combining the morphological composition of surface, subsurface and abrasive dust. On this basis, carbon-based composites and gradient self-lubricating materials were developed to meet the needs of current-carrying friction wor-king conditions.
This paper summarizes the basic characteristics of current-carrying friction and wear, expounds the influence of working parameters on current-carrying friction and wear performance, focuses on the analysis of arc generation mechanism and influencing factors in current-carrying friction and wear, summarizes the research results of simulation and prediction of temperature field and wear extent of current-carrying friction and wear, and the research progress of friction and wear mechanism, antifriction and arc suppression in current-carrying friction is summarized. Finally, the exis-ting problems in current-carrying friction research are sorted out and the improvement direction is put forward.
Key words:  current-carrying friction wear    electric arc    friction wear mechanism    predictive simulation    antifriction and arc-suppressing
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TH117  
基金资助: 北京市自然科学基金(2152031);武器装备预研基金项目重点实验室基金(9140C8502010C85)
作者简介:  惠阳,2017年6月毕业于装甲兵工程学院,获得工学学士学位。现为陆军装甲兵学院硕士研究生,在刘贵民教授的指导下进行研究。目前主要研究领域为超音速等离子喷涂层在载流条件下的摩擦磨损性能及机理
刘贵民,波兰华沙理工大学工学博士学位,装甲兵工程学院教授,博士生导师。主要研究方向为:金属基复合材料、表面工程、装备失效分析。发表论文100余篇,其中SCI、EI收录40余篇,出版编、译著9部。近年主持了国家高技术研究发展计划(“863计划”)项目“碳化硼陶瓷基3DMC防护材料”,国家自然科学基金项目“尺度耦合效应对重负荷高性能铜基摩擦材料摩擦学性能的影响研究”,国家安全重大基础研究(“国防973”)子项目“微小尺度非均质摩擦层热物理模型研究”等各类课题30余项。
引用本文:    
惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
HUI Yang, LIU Guimin, YAN Tao, DU Linfei, ZHOU Li. Research Status and Prospect of Current-carrying Friction and Wear. Materials Reports, 2019, 33(13): 2272-2280.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040166  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2272
1 He D H, Manory R R, Grady N. Wear, 1998, 215(1), 146.2 Kubo S, Kato K. Wear, 1998, 216(2), 172.3 Nagasawa H, Kato K. Wear, 1998, 216(2), 179.4 Yan T, Liu G M, Zhu S, et al. Materials Review A: Review Papers,2018, 32(1), 135 (in Chinese).闫涛, 刘贵民, 朱硕,等. 材料导报:综述篇, 2018, 32(1), 135.5 Tu J P, Qi W X, Yang Y Z, et al. Wear, 2001, 249(10-11), 1021.6 Ding T. Friction and wear behaviors and electrical properties of pantograph strip/contact wire materials in electric railway. Ph.D. Thesis, Southwest Jiaotong University, China, 2011 (in Chinese).丁涛. 电气化铁路受电弓/接触线摩擦磨损性能及电特性研究. 博士学位论文, 西南交通大学, 2011.7 Wang X. Study on the mechanism of arc discharge for a pantograph/catenary system. Master's Thesis, Southwest Jiaotong University, China, 2011 (in Chinese).王鑫. 受电弓/接触网系统电弧放电机理研究. 硕士学位论文, 西南交通大学, 2011.8 Wang X R, Wang B. Journal of Chongqing University of Technology(Na-tural Science), 2018, 32(2), 207 (in Chinese).王秀荣, 王波. 重庆理工大学学报(自然科学), 2018, 32(2), 207.9 Meger R A, Cooper K, Jones H, et al. IEEE Transactions on Magnetics, 2005, 41(1), 211.10 Jin W L, Lei B, Li Z Y, et al. Fire Control & Command Control, 2013(11), 56 (in Chinese).金龙文, 雷彬, 李治源,等. 火力与指挥控制, 2013(11), 56.11 Yang D, Yuan W Q, Zhao Y, et al. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3),48 (in Chinese).杨丹, 袁伟群, 赵莹,等. 电工电能新技术, 2014, 33(3), 48.12 Zhang Y Z, Yang Z H, Shang G B. Chinese Journal of Nature, 2014, 36(4), 256 (in Chinese).张永振, 杨正海, 上官宝. 自然杂志, 2014, 36(4), 256.13 Dai L M, Lin J Z, Ding X H. China Railway Science, 2002, 23(2),111 (in Chinese).戴利民, 林吉忠, 丁新华. 中国铁道科学, 2002, 23(2), 111.14 Xu B S, Zhu S H. Theory and technology of surface engineer, National Defense Industry Press, China, 2010 (in Chinese).徐滨士, 朱绍华. 表面工程的理论与技术, 国防工业出版社, 2010.15 Jia S G, Song K X, Zhang Y Z, et al. Hot Working Technology, 2011, 40(20), 4 (in Chinese).贾淑果, 宋克兴, 张应周,等. 热加工工艺, 2011, 40(20), 4.16 Dong L, Chen G X, Zhu M H, et al. Wear, 2007, 263(1), 598.17 Li X F. Study on the friction and wear behavior of stainless steel rubbing against copper-impregnated metallized carbon under electrical currents. Master's Thesis, Southwest Jiaotong University, China, 2011 (in Chinese).李丰学. 不锈钢/浸金属碳带电摩擦磨损性能的试验研究. 硕士学位论文, 西南交通大学, 2007.18 Hu C D. Study on arc erosion property of the strip materials with electric current. Master's Thesis, Henan University of Science and Technology, 2008 (in Chinese).胡道春. 滑板材料载流摩擦磨损中电弧侵蚀特性研究. 硕士学位论文, 河南科技大学, 2008.19 Matsuyama S. Japanese Journal of Tribology, 1996, 41(7), 670.20 Yi F, Zhang M, Xu Y. Carbon, 2005, 43(13), 2685.21 Shinchi A, Imada Y, Honda F, et al. Wear, 1999, 230(1), 78.22 Milkovic' M, Ban D. Carbon, 1996, 34(10), 1207.23 Liu Z, Jia H, Wang L, et al. Spacecraft Environment Engineering, 2016, 33(1), 72.24 Huo J Y, Xu S F, Liu X H, et al. Metallic Functional Materials, 2013, 20(1), 13 (in Chinese).霍金元, 许少凡, 刘献华,等. 金属功能材料, 2013, 20(1), 13.25 Tsai C W, Tsai M H, Yeh J W, et al.Journal of Alloys & Compounds, 2010, 490(1),160.26 Yan X Q, Xie Z L, Fan B S, et al. Tribology, 2011, 31(6), 587.27 Greenwood J A. British Journal of Applied Physics, 1966, 17(12), 1621.28 Xu J, Hui Y, Long X, et al. Materials & Design, 2004, 25(6), 489.29 Kubo S, Zhang X R, Zhang F. Foreign Locomotive & Rolling Stock Technology, 2000(5), 4 (in Chinese).久保俊一, 张孝仁, 张芳. 国外机车车辆工艺, 2000(5), 4.30 Zhao H, Barber G C, Liu J. Wear, 2001, 249(5-6), 409.31 Bu J, Ding T, Chen G X. Lubrication Engineering, 2010, 35(5), 22 (in Chinese).卜俊, 丁涛, 陈光雄. 润滑与密封, 2010, 35(5), 22.32 Shen X Q, Sun L M, Zhang Y Z. Lubrication Engineering, 2006(1), 72 (in Chinese).沈向前, 孙乐民, 张永振. 润滑与密封, 2006(1), 72.33 He D H, Manory R. Wear, 2001, 249(7), 626.34 Hu Y, Dong B J, Huang H, et al. Tribology, 2015, 35(6), 677 (in Chinese).胡艳, 董丙杰, 黄海,等. 摩擦学学报, 2015, 35(6), 677.35 Bouchoucha A, Chekroud S, Paulmier D. Applied Surface Science, 2004, 223(4), 330.36 Guo F Y, Lou X M, Li B J, et al. Journal of Liaoning Technical University (Natural Science), 2012, 31(1), 83 (in Chinese).郭凤仪, 娄晓妹, 李本君,等. 辽宁工程技术大学学报(自然科学版), 2012, 31(1), 83.37 Yasar I, Canakci A, Arslan F. Tribology International, 2007, 40(9), 1381.38 Dong L, Chen G X, Zhou G R. Machinery Design & Manufacture, 2010(2), 123 (in Chinese).董霖, 陈光雄, 周仲荣. 机械设计与制造, 2010(2), 123.39 Zhao X F, Miao Y F, Yu D Y. Materials Protection, 2017, 50(1), 5 (in Chinese).赵晓非, 苗雨芳, 于冬云. 材料保护, 2017, 50(1), 5.40 Xu D C, Wang J G. Tribology, 2016, 36(3), 371 (in Chinese).许迪初, 汪久根. 摩擦学学报, 2016, 36(3), 371.41 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2002 (in Chinese).温诗铸, 黄平. 摩擦学原理, 清华大学出版社, 2002.42 Matsuyama S, Li C Y. High Power Converter Technology, 1997(1),52 (in Chinese).松山晋作, 李春阳. 大功率变流技术, 1997(1), 52.43Tian L, Sun L M, Shang G B, et al. Materials for Mechanical Enginee-ring, 2012, 36(9), 69 (in Chinese).田磊, 孙乐民, 上官宝,等. 机械工程材料, 2012, 36(9), 69.44 Zhao F. Hunan Nonferrous Metals, 2007, 23(4), 35 (in Chinese).赵飞. 湖南有色金属, 2007, 23(4), 35.45 He D H, Manory R, Sinkis H. Wear, 2000, 239(1), 10.46 Azevedo C R F, Sinatora A. Engineering Failure Analysis, 2004, 11(6), 829.47 Dai L M. Study on friction and wear properties of skateboard materials. Ph.D. Thesis, China Academy of Railway Sciences, China, 2001 (in Chinese).戴利民. 滑板材料受流摩擦磨损性能的研究. 博士学位论文, 中国铁道科学研究院, 2001.48 Wang Q P. Arc theory in electrical appliances, Mechanical Industry Press, 1991(in Chinese).王其平.电器电弧理论, 机械工业出版社, 1991.49 Kubo S, Kato K. Tribology International, 1999, 32(7), 367.50 Dong L, Li C, Chen G, et al. China Railway Science, 2014, 35(3),102 (in Chinese).董霖, 李传喜, 陈光雄,等. 中国铁道科学, 2014, 35(3), 102.51 Walters S, Rachid A, Mpanda A. In : International Conference on Pantograph and Catenary Interaction Framework for Intelligent Control. Amiens, 2011, pp. 1. 52 Nituca C. Electric Power Systems Research, 2013, 96, 211.53 Ma Y S, Gao G Q, Zhu G Y. High Voltage Engineering, 2015, 41(11), 3597 (in Chinese).马云双, 高国强, 朱光亚. 高电压技术, 2015, 41(11), 3597.54 Plesca A. International Journal of Thermal Sciences, 2014, 84(84), 125.55 Mattera J P, Glises R, Baucour P, et al. Iet Electrical Systems in Transportation, 2012, 2(3), 110.56 Wu J Q, Qian Q Q. Journal of the China Railway Society, 2008, 30(3), 31 (in Chinese).吴积钦, 钱清泉. 铁道学报, 2008, 30(3), 31.57 Lei G, Qunzhan L I, Xie S, et al. Journal of Southwest Jiaotong University, 2013, 48(2), 230 (in Chinese).郭蕾, 李群湛, 解绍锋,等. 西南交通大学学报, 2013, 48(2), 230.58 Lyu Q A, Li Z Y, Lei B, et al. IEEE Transactions on Plasma Science, 2013, 41(5), 1403.59 Qing H, Bao M. Defence Technology, 2016, 12(2), 101.60 Chen L X, He J J, Xia S G, et al. High Voltage Engineering, 2014, 40(4), 1071 (in Chinese).陈立学, 何俊佳, 夏胜国,等. 高电压技术, 2014, 40(4), 1071.61 Li Q, Fan C Z, Jia Y Z, et al. Journal of Ballistics, 2006, 18(4), 38 (in Chinese).李强, 范长增, 贾元智,等. 弹道学报, 2006, 18(4), 38.62 Bucca G, Collina A. Wear, 2009, 266(1-2), 46.63 Usuda T. Quarterly Report of RTRI, 2007, 48(48), 170.64 Bucca G, Collina A. Tribology International, 2015, 92, 47.65 Hu Y, Yang H J , Dong B J , et al. Journal of the China Railway Society, 2016(1), 48.胡艳, 杨红娟, 董丙杰,等. 铁道学报, 2016(1), 48.66 Lee D, Gan Y X, Chen X, et al. Materials Science & Engineering A, 2007, 447(1-2), 209.67 Gao Z B, Wu G N, Lv W, et al. High Voltage Apparatus, 2009, 45(3), 104.高宗宝, 吴广宁, 吕玮,等. 高压电器, 2009, 45(3), 104.68 He C H. Development of pantograph-catenary arc simulate on system and experimental research. Master's thesis, Southwest Jiaotong University, China, 2009 (in Chinese).何常红. 弓网电弧模拟系统的研制和试验研究. 硕士学位论文, 西南交通大学, 2009.69 Zhang Y, Yang Z, Song K, et al. Friction, 2013, 1(3),259.70 Tu C J. Preparation and investigation of wear behavior and anti-wear mechanism of resin-type pantograph contact strip materials. Ph.D. Thesis, Hunan University, China, 2009 (in Chinese).涂川俊. 树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究. 博士学位论文, 湖南大学, 2009.71 Ouyang J H, Shi C C, Liu Z G, et al. Wear, 2015, 330-331,272.72 Zhang Y, Ding G P, Zhou Y C, et al. Materials Letters, 2002, 55(5), 285.73 Zhai W, Shi X, Yao J, et al. ASLE Transactions, 2015, 58(3), 454.74 Xu Z, Shi X, Zhang Q, et al. Journal of Materials Engineering & Performance, 2014, 23(6), 2255.75 Song J, Zhang Y, Yuan F, et al. Journal of the European Ceramic Society, 2015, 35(5), 1581.76 Song J, Zhang Y, Su Y, et al. Wear, 2015, 338-339, 351.77 Su Y F, Zhang Y S, Song J, et al. Tribology Letters, 2016, 61(1), 9.
[1] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[2] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[3] 周治文, 江旭东, 黄朴, 陈孝阳, 韦德满, 许征兵. 高速电弧喷涂FeAlCrTiC涂层组织结构及耐磨、耐腐蚀性能[J]. 材料导报, 2019, 33(16): 2771-2776.
[4] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[5] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[6] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[7] 唐明, 代明江, 韦春贝, 邱万奇, 林松盛, 侯惠君, 李洪. 基体偏压对AlCrSiN涂层结构及力学性能的影响[J]. 材料导报, 2018, 32(18): 3099-3103.
[8] 宋刚, 迟佳玉, 于景威, 刘黎明. 镁/钢激光-电弧复合焊接接头的腐蚀行为[J]. 材料导报, 2018, 32(16): 2773-2777.
[9] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[10] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[11] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[12] 杨海欧,王健,周颖惠,王冲,林鑫. 电弧增材制造技术及其在TC4钛合金中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1884-1890.
[13] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[14] 刘长赛,王玉江,盛忠起,魏世丞,梁义,李岳彬,王博. 曲轴维修与再制造现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 141-148.
[15] 张达, 戴永年, 梁风. 电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策*[J]. CLDB, 2017, 31(9): 64-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed