Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2771-2776    https://doi.org/10.11896/cldb.18060183
  金属与金属基复合材料 |
高速电弧喷涂FeAlCrTiC涂层组织结构及耐磨、耐腐蚀性能
周治文1, 江旭东1, 黄朴1, 陈孝阳1, 韦德满1, 许征兵1, 2,
1 广西大学广西有色金属及特色材料加工重点实验室,南宁 530004
2 广西大学广西生态型铝产业协同创新中心,南宁 530004
Microstructure, Wear and Corrosion Resistance of FeAlCrTiC Coatings Prepared by High-velocity Arc Spraying
ZHOU Zhiwen1, JIANG Xudong1, HUANG Pu1, CHEN Xiaoyang1, WEI Deman1, XU Zhengbing1,2 1
Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
2 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 2859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高速电弧喷涂技术,在45钢表面制备FeAlCrTiC耐磨耐腐蚀涂层。采用光学显微镜、扫描电镜、X射线光电子能谱仪、X射线衍射仪、洛氏硬度计、销盘式磨粒磨损试验机、万能试验机及电化学工作站对涂层的微观结构和性能进行研究和分析。结果表明:高速电弧喷涂制备的FeAlCrTiC涂层具有典型的紧密层状堆叠结构,含有晶体相、氧化物和少量非晶体相;涂层内部的孔隙率低,平均值仅为5.36%;涂层与基体的主要结合方式为机械结合,结合强度高,达到了40.56 MPa;涂层表面的洛氏硬度为45.5HRC,涂层的相对耐磨性达到了1.776;涂层的自腐蚀电位相比基体提高了113.8 mV,耐腐蚀性能较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周治文
江旭东
黄朴
陈孝阳
韦德满
许征兵
关键词:  高速电弧喷涂  FeAlCrTiC  组织  耐磨  耐腐蚀    
Abstract: FeAlCrTiC wear-resistant and corrosion-resistant coatings were prepared on the substrate of 45 steel by using high-velocity arc spraying (HVAS) technology. The microstructures and properties of the coatings were studied and analyzed by optical microscope, SEM, X-ray photo-electron spectroscopy, X-ray diffractometer, Rockwell hardness tester, pin-disc abrasive wear testing machine, universal testing machine and electrochemical workstation. The results show that the FeAlCrTiC coatings have a typical tight layered structure, and contain crystalline and oxide and little amorphous phases. The average value of internal porosity of coating is 5.36%. The main combination between coating and substrate are mechanical combination. The bonding strength between coating and matrix reaches 40.56 MPa. The Rockwell hardness of the coating surface is 45.5HRC. The relative wear resistance of the coating reaches 1.776. The self-corrosion potential of the coating is 113.8 mV higher than that of the substrate, which lead to better corrosion resistance performance.
Key words:  high-velocity arc spraying    FeAlCrTiC    microstructure    wear resistance    corrosion resistance
                    发布日期:  2019-07-12
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51401057);“铝合金材料先进加工技术”八桂学者专项经费;广西有色金属及特色材料加工重点实验室青年基金(GXYSYF1808);广西研究生教育创新计划(YCSW2018054)
作者简介:  周治文,广西大学硕士研究生。2012年9月至2016年7月,在黑龙江科技大学获得材料成型及控制工程专业工学学士学位,2016年9月至今,就读广西大学材料加工工程专业,攻读硕士学位。主要从事超音速电弧喷涂表面耐磨损和耐腐蚀研究。
许征兵,广西大学副教授,硕士生导师,2010年在西北工业大学凝固技术国家重点实验室材料加工工程专业获博士学位。长期从事有色金属材料加工理论与工艺研究,目前研究领域主要是铝合金的熔体处理和加工技术以及表面工程的研究。近五年来主持国家自然科学基金项目1项,省部级项目2项,第一或通讯作者发表论文20余篇,以第一发明人申请发明专利4项。
引用本文:    
周治文, 江旭东, 黄朴, 陈孝阳, 韦德满, 许征兵. 高速电弧喷涂FeAlCrTiC涂层组织结构及耐磨、耐腐蚀性能[J]. 材料导报, 2019, 33(16): 2771-2776.
ZHOU Zhiwen, JIANG Xudong, HUANG Pu, CHEN Xiaoyang, WEI Deman, XU Zhengbing 1. Microstructure, Wear and Corrosion Resistance of FeAlCrTiC Coatings Prepared by High-velocity Arc Spraying. Materials Reports, 2019, 33(16): 2771-2776.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060183  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2771
[1] Tian H L, Wei S C, Chen Y X, et al. Rare Metal Materials and Engineering, 2014, 43(1), 135(in Chinese).
田浩亮, 魏世丞, 陈永雄, 等. 稀有金属材料与工程, 2014, 43(1), 135.
[2] Wei S C. China Surface Engineering, 2011, 24(2), 30(in Chinese).
魏世丞. 中国表面工程, 2011, 24(2), 30.
[3] Wang Hangong, Zha Bailin, Su Xunjia, et al. In: International Thermal Spray Confe-rence. Singapore, 2001, pp.467.
[4] Khan M N, Shamim T. Journal of Thermal Spray Technology, 2014, 23(6), 910.
[5] Sun J J, Zhou Z Q. Surface Technology, 1997, 7(1), 43(in Chinese).
孙景江, 周正权. 表面技术, 1997, 7(1), 43.
[6] Liu Giumin, Roz·niatowski K, Kurzydtowski K J. Mate-rials Characterization, 2001, 46(2), 99.
[7] Tien S K, Duh J G, Chen Y I. Surface & Coatings Technology, 2004, 177, 532.
[8] Zaat J H. Annual Review of Materials Research, 1983, 13(1), 9.
[9] Stoloff N S. Materials Science & Engineering A, 1998, 258(1-2), 1.
[10] Zhou Y, Wang M, Zhao F, et al. Surface Technology, 2017, 46(10), 156(in Chinese).
周勇, 王猛, 赵飞, 等. 表面技术, 2017, 46(10), 156.
[11] Gao H Y, He Y H, Shen P Z. Materials Review, 2008, 22(7), 68(in Chinese).
高海燕, 贺跃辉, 沈培智. 材料导报, 2008, 22(7), 68.
[12] Dallaire S, Levert H. Journal of Thermal Spray Technology, 1997, 6(4), 456.
[13] Meng C. New Technology and New Products of China, 2011, 13(9), 125(in Chinese).
孟成. 中国新技术新产品, 2011, 13(9), 125.
[14] Inoue Akihisa, Gook Jin Seon. Materials Transactions JIM, 2007, 36(9), 1180.
[15] Rezakhani D. Anti-Corrosion Methods and Materials, 2007, 54(4), 237.
[16] Wang Y. Foundry Technology, 2015(10), 2467(in Chinese).
王颖. 铸造技术, 2015(10), 2467.
[17] Guo J H, Lu C W, Ni X J, et al. China Surface Engineering, 2006, 19(5), 45(in Chinese).
郭金花, 陆曹卫, 倪晓俊, 等. 中国表面工程, 2006, 19(5), 45.
[18] Song X Y, Wu Y J, Gao S Y, et al. Hot Working Technology, 2017, 46(8), 167(in Chinese).
宋晓勇, 吴亚军, 高守阳, 等. 热加工工艺, 2017, 46(8), 167.
[19] Zhang S Q. Study on preparation and tribological properties of Fe-based amorphous coating deposited by arc spraying. Master’s Thesis, Henan University of Science and Technology, China, 2010 (in Chinese).
张绍强. 电弧喷涂Fe基非晶涂层的制备及摩擦学性能研究. 硕士学位论文, 河南科技大学, 2010.
[20] Hu A P, Kong D J, Zhu Wei. Tool Engineering, 2008, 42(11), 34(in Chinese).
胡爱萍, 孔德军, 朱伟. 工具技术, 2008, 42(11), 34.
[21] Zou H, Wang Z P, Ji Z H. Heat Treatment of Metals, 2010, 35(2), 51(in Chinese).
邹慧, 王志平, 纪朝辉. 金属热处理, 2010, 35(2), 51.
[22] Wang Y, Zheng Y G, Wang J Q, et al. Acta Metallurgica Sinica, 2015, 51(1), 49(in Chinese).
王勇, 郑玉贵, 王建强, 等. 金属学报, 2015, 51(1), 49.
[23] Kang W L, Wang F P. Electrochemical corrosion principle methods and applications, Chemical Industry Press, China, 2008(in Chinese).
康万利, 王凤平. 腐蚀电化学原理、方法及应用, 化学工业出版社, 2008.
[24] Zhang B H, Cong W B, Yang P. Metal electrochemical corrosion and protection, Chemical Industry Press, China, 2011(in Chinese).
张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护, 化学工业出版社, 2011.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[9] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[15] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed