Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1027-1031    https://doi.org/10.11896/cldb.201906021
  金属与金属基复合材料 |
超薄取向硅钢组织及织构与磁性能的关系
何承绪1, 涂蕴超2, 孟利3, 杨富尧1, 刘洋1, 马光1, 韩钰1, 陈新1
1 全球能源互联网研究院有限公司, 北京 102211
2 北京科技大学材料科学与工程学院, 北京 100083
3 钢铁研究总院冶金工艺研究所, 北京 100081
The Relationship Between Microstructures & Textures and Magnetic Properties in Ultra-thin Grain-oriented Silicon Steel
HE Chengxu1, TU Yunchao2, MENG Li3, YANG Fuyao1, LIU Yang1, MA Guang1, HAN Yu1, CHEN Xin1
1 Global Energy Interconnection Research Institute Co., Ltd., Beijing 102211
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
3 Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing 100081
下载:  全 文 ( PDF ) ( 3240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在探讨超薄取向硅钢组织及织构与磁性能的关系,并从加工工艺角度揭示如何减少不利于磁性能的组织和织构的产生。利用电子背散射衍射(EBSD)技术和X射线衍射(XRD)技术对两种磁性能不同的商业超薄取向硅钢带材的显微组织和织构进行对比分析,结果发现,二者组织、织构差异均比较明显。磁性能差的带材样品的组织尺寸不一,均匀性较差,η线织构(〈100〉∥RD)所占比例偏低,非η线取向晶粒所占比例高且晶粒尺寸大,其取向特征主要表现为{210}〈001〉、{411}〈148〉及{111}〈110〉。这些不利组织的产生可能与轧制、退火工艺控制不当有关。因此,晶粒尺寸及η线取向晶粒所占比例的不同是造成两种带材性能差异的主要原因,在高性能取向硅钢超薄带材制备过程中,应精准控制轧制、退火制度等相关工艺,以避免非η线取向晶粒形成、长大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何承绪
涂蕴超
孟利
杨富尧
刘洋
马光
韩钰
陈新
关键词:  超薄取向硅钢  磁性能  组织  η线织构  Goss织构  晶粒尺寸  轧制  退火热处理    
Abstract: The purpose of this contribution is to explore the relationship between microstructures & textures and magnetic properties of ultra-thin grain-oriented silicon steel, and to reveal how to push down microstructures and textures which are detrimental to magnetic properties. We conduct the comparative analyses upon microstructures and textures of two kinds of ultra-thin gauge strips of grain-oriented silicon steel differing in magnetic properties by means of EBSD and XRD techniques. The results indicated the obvious dissimilarities over their microstructures and textures. The steel strip with lower magnetic properties has inferior grain size uniformity and lower η-fiber texture content. On the other hand, compared with the steel with superior magnetic properties, the poor one has more non η-fiber-oriented grains which are large in size and are oriented mainly in {210}〈001〉, {411}〈148〉 and {111}〈110〉. Thus, the huge disparity in magnetic properties of the two kinds of ultra-thin grain-oriented silicon steel can be attributed to the differences in grain size and η-fiber texture content. It can be inferred by this study that the accurate processing parameter control for cold rolling and annealing process is the key to avoiding formation and growth of non η-fiber-oriented grains, and is of considerable significance in the manufacture of ultra-thin gauge strips of grain-oriented silicon steel.
Key words:  ultra-thin grain-oriented silicon steel    magnetic properties    microstructure    η-fiber texture    Goss texture    grain size    rolling    annealing
                    发布日期:  2019-04-03
ZTFLH:  TG142.77  
基金资助: 国家重点研发计划项目(2017YFB0903901;2017YFB0903900)
作者简介:  何承绪,男,2013—2017年在北京科技大学获得博士学位,主要从事取向硅钢的研究。孟利,高级工程师,研究生导师。
引用本文:    
何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
HE Chengxu, TU Yunchao, MENG Li, YANG Fuyao, LIU Yang, MA Guang, HAN Yu, CHEN Xin. The Relationship Between Microstructures & Textures and Magnetic Properties in Ultra-thin Grain-oriented Silicon Steel. Materials Reports, 2019, 33(6): 1027-1031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906021  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1027
1 He C X, Yang F Y, Yan G C, et al.Acta Metallurgica Sinica,2016,52(9),1063(in Chinese).
何承绪, 杨富尧, 严国春, 等. 金属学报,2016,52(9),1063.
2 He C X Yang F Y, Meng L, et al. Journal of Magnetism and Magnetic Materials,2017,439(1),397.
3 Yan M Q, Qian H, Yang P, et al.Acta Metallurgica Sinica,2012,48(1),16(in Chinese).
颜孟奇, 钱浩, 杨平, 等. 金属学报,2012,48(1),16.
4 Yang M Q, Qian H, Yang P, et al. Journal of Materials Science and Technology,2011,27(11),1065.
5 Liu G T, Yang P, Mao W M. Acta Metallurgica Sinica,2016,52(1),25(in Chinese).
刘恭涛, 杨平, 毛卫民.金属学报,2016,52(1),25.
6 Nakashima S, Takashima K, Harase J. Journal of the Japan Institute of Metals and Materials,1991,55(8),898.
7 Arai K I, Ishiyama K. Materials Science Forum,1996,204-206,133.
8 Arai K I, Agatsuma S, Ishiyama K. IEEE Transactions on Magnetics,1990,26(5),1969.
9 Nakano M, Ishiyama K, Arai K I, et al. Journal of Applied Physics,1997,81(8),4098.
10 Nakano M, Ishiyama K, Arai K I. IEEE Transactions on Magnetics,1995,31(6),3886.
11 Nakano M, Ishiyama K, Arai K I, et al. IEEE Transactions on Magne-tics,1997,33(5),3754.
12 Wang Huimin, Yang Ping, Cui Feng'e, et al. Chinese Journal of Sterology and Image Analysis,2013,18(4),348(in Chinese).
王慧敏, 杨平, 崔凤娥, 等. 中国体视学与图像分析,2013,18(4),348.
13 Gao Xiuhua, Qi Kemin, Qiu Chunlin, et al. Journal of Northestern University (Natural Science),2005,26(1),259(in Chinese).
高秀华, 齐克敏, 邱春林, 等. 东北大学学报(自然科学版),2005,26(1),259.
14 Gao X H, Qi K M, Qiu C L. Transactions of Materials and Heat Treatment,2006,27(4),91(in Chinese).
高秀华, 齐克敏, 邱春林. 材料热处理学报,2006,27(4),91.
15 Liang R Y, Yang P, Mao W M. Journal of Materials Engineering,2017,45(6),87(in Chinese).
梁瑞洋, 杨平, 毛卫民. 材料工程,2017,45(6),87.
16 Littmann M F. U.S. patent, US2473156,1949.
17 Wang Y, Xu Y B, Zhang Y X, et al. Materials Research Bulletin,2015,69,138.
18 Xia Q Q, Li L J, Liu L H, et al. Materials Review A:Review Papers,2010,24(3),85(in Chinese).
夏强强, 李莉娟, 刘立华,等. 材料导报:综述篇,2010,24(3),85.
19 Ushigami Y, Okazaki Y, Abe N, et al. Journal of Materials Engineering and Performance,1995,4(4),435.
20 He Z Z, Zhao Y, Luo H W. Electrical steel, Metallurgical Industry Press, China,2012(in Chinese).
何忠治, 赵宇, 罗海文.电工钢, 冶金工业出版社,2012.
21 Samet-Meziou A, Etter A L, Baudin T, et al. Scripta Materialia,2005,53,1001.
22 He C X, Yang F Y, Ma G, et al. Acta Metallurgica Sinica (English Letter),2016,29(6),554.
23 Kumano T, Haratani T, Yshigami Y. ISIJ International,2002,42(4),440.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[4] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[5] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[6] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[7] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[8] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[11] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[14] 祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed