Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 654-659    https://doi.org/10.11896/cldb.201904017
  金属与金属基复合材料 |
钽板退火过程中的储存能演变与再结晶行为
祝佳林1,邓超1,2,,柳亚辉1,刘施峰1,张玉1
1 重庆大学材料与科学工程学院,重庆 400044 ;
2 重庆大学电子显微镜中心,重庆 400044
The Stored Energy Evolution and Recrystallization Behavior of Tantalum Plate
During Annealing
ZHU Jialin1, DENG Chao1,2, LIU Yahui1, LIU Shifeng1, ZHANG Yu1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044;
2 Electron Microscopy Center of Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 6849KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对高纯钽板分别进行单向轧制和周向轧制,得到了87%变形量的样品。将单向轧制和周向轧制样品各分为两组。其中,一组样品随炉升温至800 ℃进行预回复处理,然后在1 300 ℃保温30 min进行再结晶退火处理;另一组则直接进行再结晶退火处理。应用X射线峰形分析(XLPA)定量计算两种轧制方式下钽板的宏观储存能,结合电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术表征其预回复及再结晶微观组织,同时半定量地评估不同取向晶粒预回复后的微观储存能。结果表明:87%周向轧制钽板经过800 ℃预回复处理后,{111}([111]//ND,ND为板法向)与{100}([100]//ND)取向晶粒内部的储存能差别明显减小,后续再结晶晶粒更为均匀细小且基本呈等轴状。这主要是由于低温预回复处理使得亚晶形核机制成为钽再结晶形核的主导机制,同时基体内储存能的释放极大降低了后续再结晶驱动力及晶粒长大速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祝佳林
邓超
柳亚辉
刘施峰
张玉
关键词:  高纯钽  单向轧制  周向轧制  储存能  再结晶    
Abstract: High purity tantalum plates were deformed to 87% reduction in thickness by unidirectional rolling and clock rolling, respectively. The resultant specimens were divided into two groups. One was pre-recovered at 800 ℃ in a furnace, and then was annealed at 1 300 ℃ for 30min to generate completely recrystallized microstructure, while the other group was annealed and recrystallized without any treatment. X-ray line profile analysis (XLPA) was adopted to quantify the bulk stored energy of tantalum plates under the above-mentioned two different rolling methods. Aided by the electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM), the microstructures of pre-recovered and recrystallized tantalum plates were characterized, and the local-region stored energies of differently oriented grains in the pre-recovered samples were evaluated. The results showed that the stored energy gap of {111} ([111]//ND, ND is normal direction) and {100} ([100]//ND) orientation grain decreased obviously when 87% clock-rolled tantalum plates experienced 800 ℃ pre-recovery treatment. Meanwhile, the subsequent recrystallization grains were more homogeneous and equiaxial. This can be attributed to the subgrain-nucleation-dominated recrystallization mechanism induced by the introduction of low-temperature pre-recovery treatment, and moreover, the considerable decline of recrystallization driving force resulted from the release of stored energy in the matrix.
Key words:  high purity tantalum    unidirectional rolling    clock rolling    stored energy    recrystallization
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG146.4+16  
基金资助: 国家自然科学基金(51421001;51701032)
作者简介:  祝佳林,重庆大学材料与工程学院在读博士生,主要研究方向为溅射靶材性能的优化及体心立方金属中取向相关性的弱化。邓超,博士,重庆大学工程师,主要从事电子显微技术方面的研究,主持国家自然科学基金青年项目。
引用本文:    
祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
ZHU Jialin, DENG Chao, LIU Yahui, LIU Shifeng, ZHANG Yu. The Stored Energy Evolution and Recrystallization Behavior of Tantalum Plate
During Annealing. Materials Reports, 2019, 33(4): 654-659.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904017  或          http://www.mater-rep.com/CN/Y2019/V33/I4/654
1 Choi G S, Lim J W, Munirathnam N R, et al. Journal of Alloys & Compounds,2009,469(1-2),298.2 Liu S F, Fan H Y, Deng C, et al. International Journal of Refractory Metals & Hard Materials,2015,48,194.3 Fan H, Liu S, Li L, et al. Materials & Design,2016,97,464.4 Deng C, Liu S F, Ji J L, et al. Journal of Materials Processing Technology,2014,214(2),462.5 Huang X, Huang G J, Xiao D P, et al. Materials Science Forum,2011,686,40.6 Pegel B. Physica Status Solidi,1968,28(2),603.7 Deng C, Liu S F, Hao X B, et al. International Journal of Refractory Metals & Hard Materials,2014,46(3),24.8 Michaluk C A. Journal of Electronic Materials,2002,31(1),2.9 Huang J W. X-ray diffraction of polycrystalline materials, Metallurgical Industry Press, China,2012(in Chinese).黄继武.多晶材料X射线衍射,冶金工业出版社,2012.10 Rajmohan N, Hayakawa Y, Szpunar J A, et al. Acta Materialia,1997,45(6),2485.11 Liu Y, Liu S, Zhu J, et al. Materials Science & Engineering A,2017,707,518.12 Raabe D, Lücke K, Gottstein G. Journal de Physique IV,1993,3(C7), C7-523.13 Wilkinson A J, Dingley D J. Acta Metallurgica et Materialia,1991,39(12),3047.14 Morikawa T, Senba D, Higashida K, et al. Materials Transactions,1999,40(9),891.15 Choi S H. Materials Science Forum,2002,408-412,469.16 Choi S H, Jin Y S. Materials Science Forum,2004,371(1-2),149.17 Ebrahimi F, Ahmed Z, Li H. Applied Physics Letters,2004,85(17),3749.18 Every R L, Hatherly M. Texture,1974,1(3),233.19 MartíNez-De-Guerenu A, Arizti F, DíAz-Fuentes M, et al. Acta Materialia,2004,52(12),3657.20 Srinivasan R, Viswanathan G B, Levit V I, et al. Materials Science & Engineering A,2009,507(1-2),179.21 Hines J A, Vecchio K S. Acta Materialia,1997,45(2),635.22 Paulo Rangel Rios, Fulvio Siciliano Jr, Hugo Ricardo Zschommler San-dim, et al. Materials Research,2005,8(3),225.23 Okuda K, Rollett A D. Computational Materials Science,2005,34(3),264.24 Sinclair C W, Mithieux J D, Schmitt J H, et al. Metallurgical & Mate-rials Transactions A,2005,36(11),3205.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[3] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[4] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[5] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[6] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[7] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[8] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[9] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[10] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[11] 刘成红, 王均安, 熊邦汇, 张植权, 陈纪昌, 贺英. 立方织构Ni-Cr-Mo-W合金薄带及其性能*[J]. 《材料导报》期刊社, 2017, 31(20): 53-57.
[12] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[13] 李德超, 董俊慧, 陈海鹏, 王海燕. 退火张力对无取向硅钢再结晶织构和磁性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 92-95.
[14] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[15] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed