Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 90-94    https://doi.org/10.11896/j.issn.1005-023X.2017.022.018
  材料研究 |
Cu-3.0Ni-0.64Si合金的热变形行为
孙倩,陈冷
北京科技大学材料科学与工程学院,北京 100083
Hot Deformation Behavior of Cu-3.0Ni-0.64
Si AlloySUN Qian,CHEN Leng
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对Cu-3.0Ni-0.64Si合金进行了变形温度为750~900 ℃、变形速率为0.001~1 s-1条件下的等温压缩实验。结果表明,随着变形温度升高或变形速率降低,峰值应力明显降低,合金容易发生动态再结晶。通过线性回归分析,求得Cu-3.0Ni-0.64Si合金的变形激活能为410.4 kJ/mol,建立了Cu-3.0Ni-0.64Si合金的高温热变形流变应力本构方程ε=e40.56[sinh(0.017σ)]5.21exp[-410.4×103/(RT)]。分别讨论了变形温度和变形速率对Cu-3.0Ni-0.64Si合金在等温压缩变形中显微组织的影响。最后基于动态材料模型理论,用Prasad失稳判据,得到不同真应变量下的热加工图。优化后的工艺参数为变形温度860~900 ℃和变形速率0.002~0.01 s-1。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙倩
陈冷
关键词:  Cu-Ni-Si合金  热压缩变形  动态再结晶  热加工图    
Abstract: The isothermal compression tests of Cu-3.0Ni-0.64Si alloy were proceed at 750—900 ℃ with the strain rate of 0.001—1 s-1. The results showed that the peak stress decreased with the increase of the deformation temperature or the decrease of the strain rate, and the alloy was prone to dynamic recrystallization. The hot deformation activation energy was 410.4 kJ/mol and the corresponding thermal deformation constitutive relation equation was ε=e40.56[sinh(0.017σ)]5.21exp [-410.4×103/(RT)] of Cu-3.0Ni-0.64Si alloy, which were obtained by the linear regression analysis. The effects of the deformation temperature and strain rate on the microstructure of Cu-3.0Ni-0.64Si alloy were discussed. The hot processing maps of different true strain were constructed based on the dynamic material model and Prasad instability criterion. The optimized process parameters were deformation temperature of 860—900 ℃ and strain rate of 0.002—0.01 s-1.
Key words:  Cu-Ni-Si alloy    hot compression deformation    dynamic recrystallization    hot processing map
发布日期:  2018-05-08
ZTFLH:  TG146.1  
通讯作者:  汤爱涛,女,1963年生,博士,教授,研究方向为轻合金及其计算机模拟E-mail:tat@cqu.edu.cn   
作者简介:  孙倩:女,1990年生,硕士研究生,研究方向为高性能铜合金E-mail:sunqian@xs.ustb.edu.cn陈冷:通讯作者,男,1964年生,博士,教授,博士研究生导师,主要研究方向为材料织构与各向异性E-mail:lchen@ustb.edu.cn
引用本文:    
孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
Si AlloySUN Qian,CHEN Leng. Hot Deformation Behavior of Cu-3.0Ni-0.64. Materials Reports, 2017, 31(22): 90-94.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.018  或          https://www.mater-rep.com/CN/Y2017/V31/I22/90
1 Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater Sci Eng A, 2008, 483-484: 117.
2 Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Mater Chem Phys, 2003, 79(1): 81.
3 Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of super high strength Cu-5.2 Ni-1.2 Si alloy[J]. Chin J Nonferr Met, 2007, 17(11): 1821.
4 Hu T, Chen J H, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater, 2013, 61(4): 1210.
5 Jia Y L, Wang M P, Chen C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy[J]. J Alloys Compd, 2013, 557: 147.
6 Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys[J]. Mater Sci Eng A, 2013, 572: 65.
7 Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J Alloys Compd, 2014, 614: 189.
8 Khereddine A, Larbi F H, Djebala L, et al. X-ray diffraction analysis of cold-worked Cu-Ni-Si and Cu-Ni-Si-Cr alloys by Rietveld method[J]. Trans Nonferr Met Soc China, 2011, 21(3): 482.
9 Corson M G. Copper alloy systems with variable Alpha range and their use in the hardening of copper[J]. Trans AIME, 1927, 8:435.
10 Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy[J]. J Mater Sci, 1994, 29: 218.
11 Zhang L F, Liu P, Kang B X, et al. Kinetics of aging process of Cu-3.2Ni-0.75Si-0.30Zn alloy[J]. Chin J Nonferr Met,2003,13(3):717(in Chinese).
张凌峰, 刘平, 康布熙, 等. Cu-3.2Ni-0.75Si-0.30Zn 合金时效过程的动力学分析[J]. 中国有色金属学报, 2003, 13(3): 717.
12 Zhang Y, Liu P, Tian B H, et al. Hot deformation behavior and processing map of Cu-Ni-Si-P alloy[J]. Trans Nonferr Met Soc China, 2013, 23(8): 2341.
13 McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. J Mater Processing Technol, 1995, 53(1-2): 293.
14 Castro-Fernandez F R, Sellars C M, Whiteman J A. Changes of flow stress and microstructure during hot deformation of Al-1Mg-1Mn[J]. Mater Sci Technol, 1990, 6(5): 453.
15 Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Mater Sci Technol, 1997, 13(3): 210.
16 Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling[J]. Mater Sci Technol, 2000, 16(5): 539.
17 Sellars C, McTegart W. On the mechanism of hot deformation[J]. Acta Metall, 1966, 14(9): 1136.
18 Zener C, Hollomon J. Effect of strain rate upon plastic flow of steel[J]. J Appl Phys, 1944, 15(1): 22.
19 Gegel H L, Malas J, Doraivelu S, et al. Modeling techniques used in forging process design[M]. ASM Handbook, 1988.
20 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall Trans A,1984, 15(10): 1883.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[5] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[6] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[7] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[8] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[9] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[10] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[11] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[12] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[13] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[14] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[15] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed