Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 90-94    https://doi.org/10.11896/j.issn.1005-023X.2017.022.018
  材料研究 |
Cu-3.0Ni-0.64Si合金的热变形行为
孙倩,陈冷
北京科技大学材料科学与工程学院,北京 100083
Hot Deformation Behavior of Cu-3.0Ni-0.64
Si AlloySUN Qian,CHEN Leng
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对Cu-3.0Ni-0.64Si合金进行了变形温度为750~900 ℃、变形速率为0.001~1 s-1条件下的等温压缩实验。结果表明,随着变形温度升高或变形速率降低,峰值应力明显降低,合金容易发生动态再结晶。通过线性回归分析,求得Cu-3.0Ni-0.64Si合金的变形激活能为410.4 kJ/mol,建立了Cu-3.0Ni-0.64Si合金的高温热变形流变应力本构方程ε=e40.56[sinh(0.017σ)]5.21exp[-410.4×103/(RT)]。分别讨论了变形温度和变形速率对Cu-3.0Ni-0.64Si合金在等温压缩变形中显微组织的影响。最后基于动态材料模型理论,用Prasad失稳判据,得到不同真应变量下的热加工图。优化后的工艺参数为变形温度860~900 ℃和变形速率0.002~0.01 s-1。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙倩
陈冷
关键词:  Cu-Ni-Si合金  热压缩变形  动态再结晶  热加工图    
Abstract: The isothermal compression tests of Cu-3.0Ni-0.64Si alloy were proceed at 750—900 ℃ with the strain rate of 0.001—1 s-1. The results showed that the peak stress decreased with the increase of the deformation temperature or the decrease of the strain rate, and the alloy was prone to dynamic recrystallization. The hot deformation activation energy was 410.4 kJ/mol and the corresponding thermal deformation constitutive relation equation was ε=e40.56[sinh(0.017σ)]5.21exp [-410.4×103/(RT)] of Cu-3.0Ni-0.64Si alloy, which were obtained by the linear regression analysis. The effects of the deformation temperature and strain rate on the microstructure of Cu-3.0Ni-0.64Si alloy were discussed. The hot processing maps of different true strain were constructed based on the dynamic material model and Prasad instability criterion. The optimized process parameters were deformation temperature of 860—900 ℃ and strain rate of 0.002—0.01 s-1.
Key words:  Cu-Ni-Si alloy    hot compression deformation    dynamic recrystallization    hot processing map
                    发布日期:  2018-05-08
ZTFLH:  TG146.1  
通讯作者:  汤爱涛,女,1963年生,博士,教授,研究方向为轻合金及其计算机模拟E-mail:tat@cqu.edu.cn   
作者简介:  孙倩:女,1990年生,硕士研究生,研究方向为高性能铜合金E-mail:sunqian@xs.ustb.edu.cn陈冷:通讯作者,男,1964年生,博士,教授,博士研究生导师,主要研究方向为材料织构与各向异性E-mail:lchen@ustb.edu.cn
引用本文:    
孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
Si AlloySUN Qian,CHEN Leng. Hot Deformation Behavior of Cu-3.0Ni-0.64. Materials Reports, 2017, 31(22): 90-94.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.018  或          http://www.mater-rep.com/CN/Y2017/V31/I22/90
1 Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater Sci Eng A, 2008, 483-484: 117.
2 Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Mater Chem Phys, 2003, 79(1): 81.
3 Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of super high strength Cu-5.2 Ni-1.2 Si alloy[J]. Chin J Nonferr Met, 2007, 17(11): 1821.
4 Hu T, Chen J H, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater, 2013, 61(4): 1210.
5 Jia Y L, Wang M P, Chen C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy[J]. J Alloys Compd, 2013, 557: 147.
6 Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys[J]. Mater Sci Eng A, 2013, 572: 65.
7 Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J Alloys Compd, 2014, 614: 189.
8 Khereddine A, Larbi F H, Djebala L, et al. X-ray diffraction analysis of cold-worked Cu-Ni-Si and Cu-Ni-Si-Cr alloys by Rietveld method[J]. Trans Nonferr Met Soc China, 2011, 21(3): 482.
9 Corson M G. Copper alloy systems with variable Alpha range and their use in the hardening of copper[J]. Trans AIME, 1927, 8:435.
10 Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy[J]. J Mater Sci, 1994, 29: 218.
11 Zhang L F, Liu P, Kang B X, et al. Kinetics of aging process of Cu-3.2Ni-0.75Si-0.30Zn alloy[J]. Chin J Nonferr Met,2003,13(3):717(in Chinese).
张凌峰, 刘平, 康布熙, 等. Cu-3.2Ni-0.75Si-0.30Zn 合金时效过程的动力学分析[J]. 中国有色金属学报, 2003, 13(3): 717.
12 Zhang Y, Liu P, Tian B H, et al. Hot deformation behavior and processing map of Cu-Ni-Si-P alloy[J]. Trans Nonferr Met Soc China, 2013, 23(8): 2341.
13 McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. J Mater Processing Technol, 1995, 53(1-2): 293.
14 Castro-Fernandez F R, Sellars C M, Whiteman J A. Changes of flow stress and microstructure during hot deformation of Al-1Mg-1Mn[J]. Mater Sci Technol, 1990, 6(5): 453.
15 Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Mater Sci Technol, 1997, 13(3): 210.
16 Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling[J]. Mater Sci Technol, 2000, 16(5): 539.
17 Sellars C, McTegart W. On the mechanism of hot deformation[J]. Acta Metall, 1966, 14(9): 1136.
18 Zener C, Hollomon J. Effect of strain rate upon plastic flow of steel[J]. J Appl Phys, 1944, 15(1): 22.
19 Gegel H L, Malas J, Doraivelu S, et al. Modeling techniques used in forging process design[M]. ASM Handbook, 1988.
20 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall Trans A,1984, 15(10): 1883.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[3] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[4] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[5] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[6] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[7] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[8] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[9] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[10] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[11] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[12] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[13] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[14] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[15] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed