Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080187-6    https://doi.org/10.11896/cldb.22080187
  金属与金属基复合材料 |
应变速率对7065铝合金等温压缩软化机制的影响
赵言1,2, 唐建国1,2, 张勇1,2,*, 郑许1,2,3, 赵辉1,2
1 中南大学材料科学与工程学院,长沙 410083
2 中南大学有色金属材料科学与工程教育部重点实验室,长沙 410083
3 广西南南铝加工有限公司铝合金材料与加工重点实验室,南宁 530031
Effect of Strain Rate on Isothermal Compression Softening Mechanism of 7065 Aluminum Alloy
ZHAO Yan1,2, TANG Jianguo1,2, ZHANG Yong1,2,*, ZHENG Xu1,2,3, ZHAO Hui1,2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Non-ferrous Metals Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3 Guangxi Key Laboratory of Materials and Processes of Aluminum Alloys, ALG Aluminum lnc., Nanning 530031, China
下载:  全 文 ( PDF ) ( 25713KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等温压缩实验并结合电子背散射衍射手段,研究了应变速率对7065铝合金热变形行为的影响规律。结果表明,随着应变速率由0.001 s-1增加到30 s-1,合金的动态再结晶面积分数先显著减少,在1 s-1时达到较低水平,而后变化幅度小于10%,当应变速率大于1 s-1时,合金的亚结构面积分数显著增加。低应变速率阶段(0.001~1 s-1)的软化机制为动态再结晶(DRX)机制和动态回复(DRV)机制,而高应变速率阶段(1~30 s-1)的软化机制为DRV机制。随着应变速率的增加,等温压缩变形后合金的形变储能逐渐增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵言
唐建国
张勇
郑许
赵辉
关键词:  Al-Zn-Mg-Cu合金  等温压缩  热变形  本构方程  动态再结晶(DRX)  动态回复(DRV)    
Abstract: The effect of strain rate on the hot deformation behavior of 7065 aluminum alloy was investigated by isothermal compression experiments and electron backscatter diffraction. The results show that as the strain rate increases from 0.001 s-1 to 30 s-1, the dynamic recrystallization area fraction of the alloy first decreases significantly, reaching a lower level at 1 s-1, and then the change is less than 10%, and the substructure area fraction increases significantly when the strain rate is greater than 1 s-1. The softening mechanisms in the low strain rate range (0.001—1 s-1) are dynamic recrystallization (DRX) mechanism and dynamic recovery (DRV) mechanism, while the softening mechanism in the high strain rate range (1—30 s-1) is DRV. With the increase of strain rate, the deformation stored energy of alloy after isothermal compression deformation gra-dually increases.
Key words:  Al-Zn-Mg-Cu alloy    isothermal compression    hot deformation    constitutive equation    dynamic recrystallization(DRX)    dynamic recovery(DRV)
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TG146.2  
基金资助: 高韧高耐蚀铝合金厚板制备技术及应用研究(桂科AA22067075)
通讯作者:  *张勇,中南大学材料科学与工程学院特聘副教授、硕士研究生导师。2008年中南大学材料科学与工程专业硕士毕业,2014年澳大利亚蒙那仕大学博士毕业。主要从事高性能铝镁合金性能调控与开发的工作。参与国家“863”、国家“973”等项目10余项。发表学术论文40余篇。yong.zhang@csu.edu.cn   
作者简介:  赵言,2020年6月获得辽宁大学工学学士学位。现为中南大学材料科学与工程学院硕士研究生。目前主要研究领域为高性能铝合金的制备和加工。
引用本文:    
赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
ZHAO Yan, TANG Jianguo, ZHANG Yong, ZHENG Xu, ZHAO Hui. Effect of Strain Rate on Isothermal Compression Softening Mechanism of 7065 Aluminum Alloy. Materials Reports, 2024, 38(8): 22080187-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080187  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080187
1 Zhang X M, Deng Y L, Zhang Y. Acta Metallurgica Sinica, 2015, 51(3), 257(in Chinese).
张新明, 邓运来, 张勇. 金属学报, 2015, 51(3), 257.
2 Yoganjaneyulu G, Babu K A, Siva G V, et al. Materials Letters, 2019, 253, 18.
3 Zhang H M, Chen G, Chen Q, et al. Journal of Alloys and Compounds, 2018, 743, 283.
4 Liu Y, Wang X, Zhu D B, et al. Journal of Materials Engineering and Performance, 2020, 29(2), 787.
5 Wang X D, Pan Q L, Liu L L, et al. Materials Characterization, 2018, 144, 131.
6 Zhao J H, Deng Y L, Tang J G. Journal of Materials Research and Technology, 2020, 9(4), 8001.
7 Jin N P, Zhang H, Han Y, et al. Materials Characterization, 2009, 60(6), 530.
8 Lin G Y, Zheng X Y, Yang W, et al. Acta Metallurgica Sinica(English Letters), 2009, 22(2), 110.
9 Zhang J J, Yi Y P, Huang S Q, et al. Materials Science and Engineering A, 2021, 804, 140650.
10 Wang P, Jin X J, Li H, et al. Journal of Plasticity Engineering, 2020, 27(11), 182(in Chinese).
王萍, 金晓杰, 李辉, 等. 塑性工程学报, 2020, 27(11), 182.
11Wang X D, Pan Q L, Xiong S W, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(6), 1101(in Chinese).
王向东, 潘清林, 熊尚武, 等. 中国有色金属学报, 2018, 28(6), 1101.
12 Raja N, Daniel B S S. Journal of Alloys and Compounds, 2022, 902, 163690.
13 Wang Y, Yang B W, Gao M Q, et al. Materials Science and Engineering A, 2022, 840, 142953.
14 Peng J H, Sun Q J, Zhou J W, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(4), 994(in Chinese).
彭嘉豪, 孙前江, 周建伟, 等. 中国有色金属学报, 2022, 32(4), 994.
15 Han N M, Zhang X M, Liu S D, et al. Journal of Alloys and Compounds, 2011, 509(10), 4138.
16 Kannan M B, Raja V S. Engineering Fracture Mechanics, 2010, 77(2), 249.
17 Zhao J H, Deng Y L, Tang J G, et al. Journal of Alloys and Compounds, 2019, 809, 151788.
18 Luo L, Liu Z Y, Bai S, et al. Materials, 2020, 13(7), 1743.
19 Ke B, Ye L Y, Tang J G, et al. Journal of Alloys and Compounds, 2020, 845, 156113.
20 Li J, Li F G, Cai J, et al. Computational Materials Science, 2013, 71, 56.
21 Samantaray D, Mandal S, Bhaduri A K. Computational Materials Science, 2009, 47(2), 568.
22 Ren J S, Li X L, Xiao S T, et al. Materials Reports, 2020, 34(Z1), 283(in Chinese).
任军帅, 李欣琳, 肖松涛, 等. 材料导报, 2020, 34(Z1), 283.
23 Wang T X, Lu S Q, Wang K L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(6), 1338(in Chinese).
王天祥, 鲁世强, 王克鲁, 等. 中国有色金属学报, 2020, 30(6), 1338.
24 Gao Z Y, Sheng K, Kang Y, et al. Materials Reports, 2019, 33(4), 694(in Chinese).
高志玉, 盛凯, 康宇, 等. 材料导报, 2019, 33(4), 694.
25 Park S Y, Kim W J. Journal of Materials Science & Technology, 2016, 32(7), 660.
26 Zener C, Hollomon J H. Journal of Applied Physics, 1946, 17(2), 69.
27 Guo H L, Sun Z C, Yang H. The Chinese Journal of Nonferrous Metals, 2013, 23(6), 1507(in Chinese).
郭海龙, 孙志超, 杨合. 中国有色金属学报, 2013, 23(6), 1507.
28 Zhang Y, Bettles C, Rometsch P A. Journal of Materials Science, 2014, 49(4), 1709.
29 Yan Z F, Wang D H, He X L, et al. Materials Science and Engineering A, 2018, 723, 212.
[1] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[5] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[6] 王孝国, 秦简, 刘方镇, 长海博文. 新型高再结晶抗力α-Al(MnCr)Si弥散强化Al-Mg-Si-Cu合金研究[J]. 材料导报, 2023, 37(24): 22070028-8.
[7] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[8] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[9] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[10] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[11] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[12] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[13] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[14] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[15] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed