Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080196-9    https://doi.org/10.11896/cldb.22080196
  金属与金属基复合材料 |
汽车用2024-T351铝合金的动态力学行为各向异性
左志东1, 刘先斌2, 刘吉波2, 汪小锋1,3,*, 陈剑斌1
1 宁波大学机械工程与力学学院,浙江 宁波 315211
2 宁波展慈新材料科技有限公司,浙江 宁波 315338
3 宁波大学冲击与安全工程教育部重点实验室,浙江 宁波 315211
Anisotropy of Dynamic Mechanical Behavior of 2024-T351 Aluminum Alloy for Automobile
ZUO Zhidong1, LIU Xianbin2, LIU Jibo2, WANG Xiaofeng1,3,*, CHEN Jianbin1
1 Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
2 Ningbo Zhanci New Material Co., Ltd., Ningbo 315338, Zhejiang, China
3 Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 35864KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用拉伸机、扫描电子显微镜(SEM)及光学显微镜(OM)等研究了汽车用2024-T351铝合金的动态力学行为各向异性与微观组织演变。结果表明,2024-T351铝合金表现出明显的各向异性且应变率对力学性能与微观组织有一定的影响。相同应变率下,0°方向上的应力最大,45°方向上的应力最小。在0°方向上,合金的抗拉强度随应变率的增加变化相对较小,而屈服强度、延伸率和断面收缩率呈现先增加后保持不变最后持续增加的趋势;在45°和90°方向上,合金的抗拉强度、屈服强度、延伸率与断面收缩率均随着应变率的提高呈现先增加后保持不变最后持续增加的趋势;90°方向相比于其他两个方向有着更强的应变率敏感性。拟合得到三个方向上的Johnson-Cook本构方程,其可以很好地预测2024-T351铝合金在各个方向上的动态力学行为。所有试样断口表面均有大小不一的韧窝,且应变率越高形成的韧窝就会越大且越深。断后晶粒尺寸与方向和应变率基本无关,但晶粒纵横比受方向和应变率的影响较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左志东
刘先斌
刘吉波
汪小锋
陈剑斌
关键词:  铝合金  动态力学行为  各向异性  微观组织  Johnson-Cook本构模型    
Abstract: The dynamic mechanical behavior and microstructure evolution of the 2024-T351 aluminum alloy used in automobiles were investigated using a tensile testing machine, scanning electron microscope (SEM), and optical microscope (OM). The results showed that the 2024-T351 aluminum alloy exhibited significant anisotropy, and the strain rate had a certain influence on the mechanical properties and microstructure. Under the same strain rate, the stress was highest in the 0° direction and lowest in the 45° direction. In the 0° direction, the ultimate tensile strength of the alloy changed relatively little with increasing strain rate, while the yield strength, elongation, and reduction of area showed a trend of increa-sing first, then remaining constant, and finally increasing continuously. In the 45° and 90° directions, the ultimate tensile strength, yield strength, elongation, and reduction of area all showed a trend of increasing first, then remaining constant, and finally increasing continuously with increa-sing strain rate. The 90° direction had a stronger strain rate sensitivity than the other two directions. Johnson-Cook constitutive equations were fitted for the alloy in the three directions, which could well predict the dynamic mechanical behavior of the 2024-T351 aluminum alloy in various directions. All specimen fracture surfaces had variable-sized dimples, and the dimples formed at higher strain rates were larger and deeper. The grain size after fracture was basically unrelated to the direction and strain rate, but the aspect ratio of the grains was greatly influenced by the direction and strain rate.
Key words:  aluminum alloy    dynamic mechanical behavior    anisotropy    microstructure    Johnson-Cook constitutive model
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TG146.21  
基金资助: 宁波市科技创新2025 重大专项项目(2021Z099;2023Z005);宁波市公益类科技计划项目(202003N4171;202002N3133);新金属材料国家重点实验室开放基金(2023-Z04)
通讯作者:  *汪小锋,宁波大学机械工程与力学学院讲师。2007年获东北大学材料科学与工程专业工学学士学位;2009年获东北大学材料学专业工学硕士学位;2016年获北京科技大学材料科学与工程专业工学博士学位;目前主要从事汽车轻量化-汽车用铝合金的研究与开发。发表论文35篇,其中SCI收录30篇,EI收录3篇;授权国家发明专利2项。wangxiaofeng@nbu.edu.cn   
作者简介:  左志东,硕士研究生,现就读于宁波大学机械工程与力学学院机械专业,在汪小锋讲师的指导下进行研究。目前主要研究领域为汽车用铝合金板材的开发。
引用本文:    
左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
ZUO Zhidong, LIU Xianbin, LIU Jibo, WANG Xiaofeng, CHEN Jianbin. Anisotropy of Dynamic Mechanical Behavior of 2024-T351 Aluminum Alloy for Automobile. Materials Reports, 2024, 38(8): 22080196-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080196  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080196
1 Sun L, Guo Y Y, Chen L, et al. Journal of Materials Research and Technology, 2021, 12, 1126.
2 Deng Y L, Zhang X M. Chinese Journal of Nonferrous Metals, 2019, 29(9), 2115(in Chinese).
邓运来, 张新明. 中国有色金属学报, 2019, 29(9), 2115.
3 Yin H G, Zou M T, Yang B Y, et al. Journal of Chongqing University of Technology(Natural Science), 2023, 37(9), 158(in Chinese).
尹恒刚, 邹梦婷, 杨炳元, 等. 重庆理工大学学报(自然科学), 2023, 37(9), 158.
4 Khina B B, Pokrovsky A I, Zhang S H, et al. Russian Journal of Non-Ferrous Metals, 2021, 62(5), 545.
5 Cavusoglu O, Leacock A G, Gürün H, et al. Materials and Technologies, 2017, 51(2), 333.
6 Ma H J, Huang L, Tian Y, et al. Materials Science and Engineering: A, 2014, 606, 233.
7 Sun W, Jing Y, Tong W P, et al. Rare Metal Materials and Enginee-ring, 2021, 50(6), 2118(in Chinese).
孙巍, 静宇, 佟伟平, 等. 稀有金属材料与工程, 2021, 50(6), 2118.
8 Dong L Y, Li Q M, Ma L F, et al. Heat Treatment Technology and Equipment, 2020, 41(2), 14(in Chinese).
董刘颖, 李秋梅, 马龙飞, 等. 热处理技术与装备, 2020, 41(2), 14.
9 Wang X F, Shi T Y, Wang H B, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(1), 27.
10 Borvik T, Hopperstad O S, Pedersen K O, et al. International Journal of Impact Engineering, 2010, 37(5), 537.
11 Hou Z X, Liu Z G, Wan M, et al. Journal of Materials Engineering and Performance, 2020, 29(6), 3745.
12 Hao Z C, Fu X L, Men X H, et al. Materials Research Express, 2019, 6(3), 036502.
13 Yan H T, Zhang W C, Zhang G X. Auto Engineer, 2018(8), 44(in Chinese).
闫海涛, 张文超, 张桂贤. 汽车工程师, 2018(8), 44.
14 Zhang Y, Wang B W, Liu X C, et al. Journal of Vibration and Shock, 2020, 39(2), 249(in Chinese).
张宇, 王彬文, 刘小川, 等. 振动与冲击, 2020, 39(2), 249.
15 Seidt J D, Gilat A. International Journal of Solids and Structures, 2013, 50(10), 1781.
16 Gao Q Q, Hu B R, Yang W. Hot Working Technology, 2014, 43(12), 113(in Chinese).
高倩倩, 胡本润, 杨伟. 热加工工艺, 2014, 43(12), 113.
17 Jia B, Rusinek A, Xiao X, et al. International Journal of Impact Engineering, 2021, 156, 103972.
18 Cheng X Y. Physical Testing and Chemical Analysis(The physical vo-lume), 2018, 54(2), 122(in Chinese).
程晓宇. 理化检验(物理分册), 2018, 54(2), 122.
19 Owolabi G, Odoh D, Peterson A, et al. World Journal of Mechanics, 2013, 3(2), 112.
20 Du H B, Yang H F, Hu Z N, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(3), 439(in Chinese).
杜汉斌, 杨海峰, 胡峥楠, 等. 中国有色金属学报, 2019, 29(3), 439.
21 Liu S D, Wang S L, Ye L Y, et al. Materials Science and Engineering: A, 2016, 677, 203.
22 Hao M, Wang L, Chen J Z, et al. Chinese Journal of Rare Metals, 2021, 45(6), 641(in Chinese).
郝敏, 王亮, 陈军洲, 等. 稀有金属, 2021, 45(6), 641.
23 Xu S, Tyson W R, Bouchard R, et al. Journal of Materials Engineering & Performance, 2009, 18(8), 1091.
24 Geng G Q, Ding D Z, Duan L B, et al. Australian Journal of Mechanical Engineering, 2022, 20(2), 516.
25 Yang S S, Sun L Q, Deng H K, et al. International Journal of Material Forming, 2021, 14(4), 677.
26 Zhang Y B, Yao S, Hong X, et al. Journal of Central South University, 2017, 24(011), 2550.
27 Jia Z, Guan B, Zang Y, et al. Materials Science and Engineering: A, 2021, 820, 141565.
28 Smerd R, Winkler S, Salisbury C, et al. International Journal of Impact Engineering, 2005, 32(1-4), 541.
29 Zhang P, Chen M H, Xie L S. Rare Metal Materials and Engineering, 2020, 49(3), 819.
30 Wang X F, Shi T Y, Wang H B, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(1), 27.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[3] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[4] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[5] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[6] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[7] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[8] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[9] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[10] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[11] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[12] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[13] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[14] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[15] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed