Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23100210-10    https://doi.org/10.11896/cldb.23100210
  金属与金属基复合材料 |
Taylor撞击实验及其应用研究进展
敬彬1,2, 胡文军2,*, 陶俊林1,2
1 西南科技大学土木工程与建筑学院,四川 绵阳 621000
2 工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621000
Research Progress on Taylor Impact Test and Its Applications
JING Bin1,2, HU Wenjun2,*, TAO Junlin1,2
1 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China
2 Sichuan Provincial Key Laboratory of Engineering Materials and Structural Impact Vibration, Mianyang 621000, Sichuan, China
下载:  全 文 ( PDF ) ( 7629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料在冲击、爆炸等高应变率加载情况下的动态塑性力学行为与静载下有着显著区别,正确认识材料动态力学行为是建立准确可靠的材料动态本构模型和数值模拟的重要基础。Taylor撞击实验是一种表征材料动态力学行为的经典实验技术,在军事、航天和核能等领域发挥着重要作用,为相关技术的改进和优化提供了有力支持。本文简要回顾了经典一维理论模型、弹塑性波传播、数值模拟和动态本构关系在Taylor撞击实验中的研究进展。分别对Taylor撞击实验的理论发展、实验技术的发展和Taylor撞击实验的应用进行详细介绍。最后探讨分析了Taylor撞击实验研究的重点、难点和今后研究的方向,为工程实践和相关问题的解决提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
敬彬
胡文军
陶俊林
关键词:  Taylor撞击实验  动态力学行为  一维分析模型  动态本构模型  弹塑性波传播    
Abstract: Materials exhibit significant differences in their dynamic plastic behavior under high strain rates loading conditions such as impact and explosion when compared to static loading. Understanding the dynamic mechanical behavior of materials is an essential foundation for establishing accurate and reliable material constitutive models and numerical simulations. Taylor impact test is a classical experimental technique that characterizes the dynamic mechanical behavior of materials and play a crucial role in fields such as military, aerospace, and nuclear energy, providing strong support for the improvement and optimization of related technologies. This paper briefly reviews the research progress on the classical one-dimensional theoretical model, elastic-plastic wave propagation, numerical simulation, and dynamic constitutive relationships in Taylor impact tests. The theoretical development of Taylor impact tests, the development of experimental techniques and applications of Taylor impact tests are described in detail. Finally, the focuses, difficulties and future research directions of Taylor impact tests are discussed and analyzed to provide references for engineering practice and solutions of related problems.
Key words:  Taylor impact test    dynamic mechanical behavior    one dimensional analysis model    dynamic constitutive model    elastic-plastic wave propagation
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  O347.3  
通讯作者:  *胡文军,博士,工程材料与结构冲击振动四川省重点实验室研究员,主要从事冲击动力学及空间核动力应用研究。wjhu@vip.sina.com   
作者简介:  敬彬,西南科技大学土木工程与建筑学院硕士研究生,在胡文军研究员、陶俊林教授的指导下进行研究。目前主要研究领域为高温高应变率下金属材料的动态力学行为。
引用本文:    
敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
JING Bin, HU Wenjun, TAO Junlin. Research Progress on Taylor Impact Test and Its Applications. Materials Reports, 2025, 39(2): 23100210-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100210  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23100210
1 Taylor G I. Journal of the ICE, 1946, 26(8), 486.
2 Taylor G I. Proceedings of the Royal Society of London. Series A. Mathema-tical and Physical Sciences, 1948, 194(1038), 289.
3 Whiffin A C. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194(1038), 300.
4 Carrington W E, Gayler M L V. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194(1038), 323.
5 Lee E H, Tupper S J. Journal of Applied Mechanics, 1954,21(1), 63.
6 Hawkyard J B, Eaton D, Johnson W. International Journal of Mechanical Sciences, 1968, 10(12), 929.
7 Hawkyard J B. International Journal of Mechanical Sciences, 1969, 11(3), 313.
8 Jones S E, Gillis P P, Foster J C, et al. Journal of Engineering Materials & Technology, 1991, 113(2), 228.
9 Jones S E, Maudlin P J, Jr J. International Journal of Impact Enginee-ring, 1997, 19(2), 95.
10 Jones S E, Maudlin P J, Gillis P P, et al. American Society of Mechanical Engineers, 1992, 97706, 173.
11 Hous J W, Willsou L L,Nixon M E. In:Proceedings of Sixth Interna-tional Conference on the Mechanical Behavior of Mtaerials. Kyoto,Japan, 1991,pp.343.
12 Chien W C. Applied Mathematics and Mechanics, 1982(6), 34 (in Chinese).
钱伟长.应用数学和力学, 1982(6), 34.
13 Liu X C, Li Z Q. Journal of Chongqing University, 1991(5), 109 (in Chinese).
刘相臣,李则强. 重庆大学学报(自然科学版), 1991(5), 109.
14 Kumagai T, Sakai S, Hata H, et al. International Journal of Impact Engineering, 2019, 138, 103468.
15 Yang H, Zhou F, Li Y, et al. European Journal of Mechanics-A/Solids, 2022, 93, 104551.
16 Shen Z K, Dai X H, Wang K H, et al. Journal of Vibration and Shock, 2023, 42(17), 86 (in Chinese).
沈子楷,戴湘晖,王可慧,等. 振动与冲击, 2023, 42(17), 86.
17 Erlich D C, Shockey D A, Seaman L.AIP Conference Proceedings. Ame-rican Institute of Physics, 1982, 78(1), 402.
18 Couque H. Le Journal De Physique IV, 2000, 10(PR9), 179.
23100210-919 Walley S M, Church P D, Townsley R, et al. Le Journal de Physique IV, 2000, 10(PR9), 69.
20 Moćko W, Janiszewski J, Radziejewska J, et al. International Journal of Impact Engineering, 2015, 75, 203.
21 Bless S J, Brar N S, Kanel G, et al. Journal of the American Ceramic Society, 1992, 75(4), 1002.
22 Murray N H, Bourne N K, Field J E, et al.AIP Conference Proceedings. American Institute of Physics, 1998, 429(1), 533.
23 Radford D D, Willmott G R, Walley S M, et al. Journal de Physique IV (Proceedings), 2003, 110,687.
24 Willmott G R, Radford D D. Journal of Applied Physics, 2005, 97(9), 093522.
25 Gust W H. Journal of Applied Physics, 1982, 53(5), 3566.
26 Wilkins M L, Guinan M W. Journal of Applied Physics, 1973, 44(3), 1200.
27 Eakins D E, Thadhani N N. Journal of Applied Physics, 2006, 100(7), 541.
28 Eakins D, Thadhani N N. International Journal of Impact Engineering, 2007, 34(11), 1821.
29 Martin M, Shen T, Thadhani N N. Materials Science & Engineering A, 2008, 494(1-2), 416.
30 Liu J, Pi A, Wu H, et al. EPJ Web of Conferences. EDP Sciences, 2015, 94, 01074.
31 Liu J, Huang F, Xu K, et al. Experimental Mechanics, 2017, 57, 1.
32 Kolsky H. Proceedings of the Physical Society B,1949, 62(11), 676.
33 Lopatnikov S L, Gama B A, Haque M J, et al. Composite Structures, 2003, 61(1-2), 61.
34 Wang L, Ding Y, Yang L. International Journal of Impact Engineering, 2013, 62, 48.
35 Hu L, Yang J, Hua L, et al. International Journal of Mechanical Sciences, 2015, 99, 168.
36 Hu L, Zhang Z, Hua L, et al. International Journal of Impact Enginee-ring, 2016, 94, 109.
37 Ding Y Y, Yang L M, Wang L L. Explosion and Shock Waves, 2015, 35(1), 1 (in Chinese).
丁圆圆, 杨黎明, 王礼立.爆炸与冲击, 2015, 35(1), 1.
38 Huang W Y, Chen G, Li J C, et al. Chinses Journal of High Pressure Physics, 2021, 35(3), 122 (in Chinese).
黄魏银,陈刚,李俊承,等. 高压物理学报, 2021, 35(3), 122.
39 Li J, Chen G, Huang F, et al. Metals, 2021, 11(5), 713.
40 Scott N R,Nicholas M D, Barton N R. International Journal of Impact Engineering, 2020, 149(1-2), 103772.
41 Chen G, Chen Z F, Tao J L, et al. Explosion and Shock Waves, 2005(5), 69 (in Chinese).
陈刚,陈忠富,陶俊林,等. 爆炸与冲击, 2005(5), 69.
42 Rule W K. International Journal of Impact Engineering, 1997, 19(9), 797.
43 Ren Y, Tan C W, Zhang J, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(2), 223.
44 Li H, Yu Z, Rong P, et al. Materials, 2021, 14(2), 258.
45 Briscoe B J, Hutchings I M. Polymer, 1976, 17(12), 1099.
46 Min O K, Nam C H, Jin K C, et al. In: Proceeding of the International Symposium on Impact Engineering, Maekawa, I(Eds.), Sendai, Japan, 1992, pp. 187.
47 Hutchings I M. Journal of the Mechanics & Physics of Solids, 1978, 26(5-6), 289.
48 Billington E W, Brissenden C. International Journal of Mechanical Sciences,1971,13(6), 531.
49 Hu W J, Zhang F J, Tian C J, et al. Journal of Experimental Mechanics, 2006(2), 157 (in Chinese).
胡文军,张方举,田常津,等. 实验力学, 2006(2), 157.
50 Sarva S, Mulliken A D, Boyce M C. International Journal of Solids & Structures, 2007, 44(7), 2381.
51 Gustavsen R L, Dattelbaum D M, Johnson C E. Procedia Engineering, 2013, 58, 147.
52 Thompson D G, DeLuca R, Archuleta J, et al. Journal of Physics: Confe-rence Series, 2014, 500(11), 112062.
53 Xiao Y, Sun Y, Zhen Y, et al. International Journal of Impact Enginee-ring, 2017, 103, 149.
54 Cai X M, Zhang W, Xu P, et al. Journal of Vibration and Shock, 2019, 38(7), 9 (in Chinese).
蔡宣明,张伟,徐鹏,等. 振动与冲击, 2019, 38(7), 9.
55 Feng X W, Li J C, Wang H B, et al. Acta Physics Sinica, 2016, 65(16), 182 (in Chinese).
冯晓伟,李俊承,王洪波,等. 物理学报, 2016, 65(16), 182.
56 Feng X W, Li J C, Chang J Z, et al. Acta Armamentarii, 2017, 38(12), 2472 (in Chinese).
冯晓伟,李俊承,常敬臻,等. 兵工学报, 2017, 38(12),2472.
57 Xiong X, Wang Z, Zheng Y X, et al. Chinses Journal of Theoretical and Applied Mechanics, 2019, 51(4), 1082 (in Chinese).
熊迅,王珠,郑宇轩,等. 力学学报, 2019, 51(4), 1082.
58 Hernandez C, Buchely M F, Maranon A. International Journal of Mecha-nical Sciences, 2015, 100, 158.
59 Gilson L, Rabet L, Imad A, et al. In: Proceedings of the 7th Symposium of Lightweight Armour Group for Defense and Security, Roubaix, France. 2019,pp.76.
60 Gilson L, Rabet L, Imad A, et al. Advanced materials for defense: deve-lopment, analysis and applications, Germany, 2020, pp. 129.
61 Gilson L, Rabet L, Imad A, et al. Forensic Science International, 2020, 310, 110238.
62 Gilson L, Rabet L, Imad A, et al. European Journal of Mechanics - A/Solids, 2022, 93, 104542.
63 Johnson G R, Cook W H. Engineering Fracture Mechanics, 1983, 21, 541.
64 Zerilli F J, Armstrong R W. Journal of Applied Physics, 1990, 68(4), 1580.
65 Follansbee P S, Kocks U F. Acta Metallurgica, 1988, 36(1), 81.
66 Lin L, Zhi X D, Fan F, et al. Journal of Vibration and Shock, 2014, 33(9), 153 (in Chinese).
林莉,支旭东,范锋,等. 振动与冲击, 2014, 33(9), 153.
67 Zhi X D, Zhang R, Lin L, et al. Explosion and Shock Waves, 2018, 38(3), 596 (in Chinese).
支旭东,张荣,林莉,等. 爆炸与冲击, 2018, 38(3), 596.
68 Acosta C A, Hernandez C, Maranon A, et al. Materials & Design, 2016, 110, 324.
69 Plunkett B, Cazacu O, Lebensohn R A, et al. In: Symposium on Plasti-city and Impact Mechanics, Bochum, Germany, 2007, pp. 1.
70 Rule W K. International Journal of Impact Engineering, 1997, 19(9), 797.
71 Piao M J, Park C H, Huh H, et al. Key Engineering Materials, 2015, 626, 389.
72Allen D J, Rule W K, Jones S E. Experimental Mechanics, 1997, 37, 333.
73Johnson G R, Cook W H. Engineering Fracture Mechanics, 1985, 21(1), 31.
74Woodward R L, O'donnell R G, Flockhart C J. Journal of Materials Science, 1992, 27(23), 6411.
75 Xiao X, Wei Z, Gang W, et al. Materials & Design, 2011, 32(5), 2663.
76 Xiao X, Mu Z, Pan H, et al. International Journal of Impact Enginee-ring, 2018, 120, 185.
77 Liu B X, Jiao B Y, Xiao X K, et al. Ordnance Material Science and Engineering, 2019, 42(2), 5(in Chinese).
刘本学,焦炳银,肖新科,等.兵器材料科学与工程, 2019, 42(2), 5.
78 Chen G, Chen Z F, Xu W F, et al. Explosion and Shock Waves, 2007(2), 131 (in Chinese).
陈刚,陈忠富,徐伟芳,等. 爆炸与冲击, 2007(2), 131.
79 Lin L, Huang B, Xiao X K, et al. Journal of Vibration and Shock, 2020, 39(18), 7(in Chinese).
林莉,黄博,肖新科,等. 振动与冲击, 2020, 39(18), 7.
80 Xu X F, Wang L, Cheng X W. Acta Armamentarii, 2020,41(7), 1401 (in Chinese).
徐雪峰,王琳,程兴旺,等. 兵工学报, 2020, 41(7), 1401.
81 Savage D J, Mcwilliams B A, Vogel S C, et al. International Journal of Impact Engineering, 2020, 143, 103589.
82 Meng Y P, Guo Z P, Wang C T, et al . Journal of Northwestern Polytechnical University. 2021,39(6), 1296 (in Chinese).
孟元沛,郭志平,王传婷,等. 西北工业大学学报,2021,39(6), 1296.
83 Ren Y, Tan C W, Zhang J, et al. Transactions of Nonferrous Metals So-ciety of China, 2011,21,223.
84 Abed F, Jankowiak T, Rusinek A. Journal of Engineering Materials and Technology, 2015, 137(4), 041005.
85 Guo Z P, Wang F, Jiang B, et al. Journal of Ordnance Equipment Engineering, 2022,43(5), 185 (in Chinese).
郭志平,王飞,姜波,等. 兵器装备工程学报, 2022, 43(5), 185.
86 Chong G, Takeshi I, Yoshikazu T, et al. International Journal of Impact Engineering, 2023, 179, 104644.
[1] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[2] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[3] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed