Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23100181-6    https://doi.org/10.11896/cldb.23100181
  高分子与聚合物基复合材料 |
再生纤维素基三明治结构复合薄膜的电磁屏蔽性能
张婷1,2, 吴翠玲1,2, 籍冰晗1,2, 韩梦瑶1,2, 杜雪岩1,2,*
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Electromagnetic Interference Shielding Properties of Regenerated Cellulose Matrix Composite Films with Sandwich Structure
ZHANG Ting1,2, WU Cuiling1,2, JI Binghan1,2, HAN Mengyao1,2, DU Xueyan1,2,*
1 School of Materials Science and Engineering,Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology,Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电磁辐射污染在工业、民用及军事等领域日趋严重,高性能的电磁干扰(Electromagnetic interference,EMI)屏蔽材料成为当前研究热点。以再生纤维素(Regenerated cellulose,RC)为基体,石墨烯(Graphene,GE)为导电填料,纳米Fe3O4为磁性填料,采用沉浸相转化法和压制成型法制备了三明治结构GE/RC-Fe3O4/RC-GE/RC复合薄膜。研究了GE含量和薄膜厚度对复合薄膜EMI屏蔽性能的影响,探讨了其屏蔽机制。结果表明,随着GE含量和薄膜厚度的增大,复合薄膜的电导率和EMI屏蔽性能逐渐提高。当GE含量为20%(质量分数,如无特殊说明,下同)、薄膜厚度为0.84 mm时,复合薄膜的EMI屏蔽效能(Shielding effectiveness,SE)达到24.7 dB。同时,GE的添加增强了复合薄膜的拉伸强度,其最大值为12.2 MPa。本研究为绿色纤维素基电磁屏蔽复合薄膜的构筑提供了借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷
吴翠玲
籍冰晗
韩梦瑶
杜雪岩
关键词:  再生纤维素  三明治结构复合薄膜  电磁屏蔽  石墨烯  纳米Fe3O4    
Abstract: Electromagnetic radiation pollution has become increasingly serious in the electronic, industrial, civil and military fields. High-performance electromagnetic interference (EMI) shielding films have recently become popular research topics. In this work, the sandwich-structured graphene (GE)/regenerated cellulose (RC)-Fe3O4/RC-GE/RC composite films were fabricated by immersed phase transformation and compression molding methods using RC as matrix, GE as conductive filler and nano Fe3O4 as magnetic filler. The influence of GE contents and the thicknesses on the EMI shielding properties of the composite films were studied, and their shielding mechanism was discussed. The results showed that the conductivity and EMI shielding effectiveness (SE) were enhanced by both the increase of GE content and the film thickness. The EMI SE of the composite films reached the maximum 24.7 dB at the GE content of 20% and the film thickness of 0.84 mm. Meanwhile, the tensile strength of the composite film was enhanced by the addition of GE, with a maximum value of 12.2 MPa. This study provides a feasible strategy to prepare cellulose-based composite films for electromagnetic shielding.
Key words:  regenerated cellulose    sandwich-structured composite film    electromagnetic interference shielding    graphene    nano Fe3O4
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TB332  
基金资助: 国家自然科学基金-联合基金项目(U22A20175)
通讯作者:  *杜雪岩,博士,兰州理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事冶金废渣综合利用、有机/无机复合功能材料等方面的研究工作。duxy@lut.edu.cn   
作者简介:  张婷,硕士,现为兰州理工大学冶金固废综合利用团队的科研助理,在杜雪岩教授的指导下进行研究。目前主要研究领域为电磁屏蔽材料。
引用本文:    
张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
ZHANG Ting, WU Cuiling, JI Binghan, HAN Mengyao, DU Xueyan. Electromagnetic Interference Shielding Properties of Regenerated Cellulose Matrix Composite Films with Sandwich Structure. Materials Reports, 2025, 39(2): 23100181-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100181  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23100181
1 Chang C, Yue X, Hao B, et al. Carbon, 2020, 167, 31.
2 Tian Y Z. Environment Science and Management, 2021, 46(11), 137 (in Chinese).
田义宗.环境科学与管理, 2021, 46(11), 137.
3 Zhang K, Wu L F, Gui T J, et al. Mateials Reports, 2021, 35(Z2), 513 (in Chinese).
张凯, 吴连锋, 桂泰江, 等. 材料导报, 2021, 35(Z2), 513.
4 Wang M, Tang X H, Cai J H, et al. Carbon, 2021,177, 377.
5 Nallabothula H, Bhattacharjee Y, Samantara L, et al. ACS Omega, 2019, 4(1), 1781.
6 Liu W, Jia K, Gu J Y, et al. Mateials Reports, 2022, 36(9), 21020136 (in Chinese).
刘伟, 贾琨, 谷建宇, 等. 材料导报, 2022, 36(9), 21020136.
7 Liu L X, Chen W, Zhang H B, et al. Nano-Micro Letters, 2022, 14(1), 111.
8 Lee T W, Lee S E, Jeong Y G. ACS Applied Materials & Interfaces, 2016, 8(20), 13123.
9 Zhang H R, Sun X W, Heng Z G, et al. Industrial & Engineering Che-mistry Research, 2018, 57(50), 17152.
10 Zhang L Q, Yang S G, Li L, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 40156.
11 Li M M, Zhao Y J, Zhang M L, et al. Macromolecular Materials and Engineering, 2022, 307(7), 210899.
12 Zhang Y, Gao Q, Zhang S, et al. Journal of Collid and Interface Science, 2022, 614, 194.
13 Zhan Y H, Hao X H, Wang L, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14623.
14 Zhang L Q, Yang B, Teng J, et al. Journal of Materials Chemistry C, 2017, 5(12), 3130.
15 Wu C L, Li X P, Qin S L, et al. Journal of Lanzhou University of Technology, 2005(2), 73 (in Chinese).
吴翠玲, 李新平, 秦胜利, 等. 兰州理工大学学报, 2005(2), 73.
16 Cheng H R, Wei S N, Ji Y X, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 139.
17 Zhang M H, Ma Z L, Ma J Z, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1358 (in Chinese).
张梦辉, 马忠雷, 马建中, 等.复合材料学报, 2021, 38(5), 1358.
18 Tang X H, Li J, Wang Y, et al. Composites Part B: Engineering, 2020, 196, 108121.
19 Sheng A, Ren W, Yang Y Q, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105692.
20 Wang G, Liao X, Yang J M, et al. Composites Science and Technology, 2019, 184, 107847.
21 French A D. Cellulose, 2013, 21(2), 885.
22 Fan M S, Chen R, Lu Y Z, et al. Composites Communications, 2022, 25, 101293.
23 Abidi N, Cabrales L, Haigler C. Carbohydrate Polymers, 2014, 100, 9.
24 Yu W C, Wang T, Liu Y H, et al. Chemical Engineering Journal, 2020, 393, 124644.
25 Blas-Sevillano R H, Veramendi T, La Torre B, et al. Carbohydrate Polymers, 2018, 197, 246.
26 Lai S L, Zhang Z, Wang H. Fine Chemicals, 2021, 38(2), 310 (in Chinese).
来水利, 张昭, 王花.精细化工, 2021, 38(2), 310.
27 Shen L H, Bao J F, Wang D, et al. Nanoscale, 2013, 5(5), 2133.
28 Liu T, Xie X, Pang Y, et al. Journal of Materials Chemistry C, 2016, 4(8), 1727.
29 Qi H S, Liu J W, Gao S L, et al. Journal of Materials Chemistry A, 2013, 1, 2161.
30 Xie Y, Hong X W, Gao Y H, et al. Synthetic Metals, 2012, 162(7-8), 677.
31 Li Y, Xue B, Yang S D, et al. Chemical Engineering Journal, 2021, 410, 128356.
32 Zhang W B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105838.
33 Jiang D, Murugadoss V, Wang Y, et al. Polymer Reviews, 2019, 59(2), 280.
34 Zhang F D, Ren P G, Guo H, et al. Advanced Electronic Materials, 2021, 7(9), 2100496.
35 Singh A P, Mishera M, Hashim D P, et al. Carbon, 2015, 85, 79.
36 Jin K X, Xing J X, Liu X G, et al. Journal of Materials Chemistry A, 2021, 9, 26999.
37 Jian X, Wu B, Wei Y F, et al. ACS Applied Materials & Interfaces, 2016, 8(9), 6101.
38 Liu J G, Qin H S, Liu Y L. Materials, 2021, 14, 4757.
39 ZhangW B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 232, 105838.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[7] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[8] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[11] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[12] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[13] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[14] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[15] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed