Electromagnetic Interference Shielding Properties of Regenerated Cellulose Matrix Composite Films with Sandwich Structure
ZHANG Ting1,2, WU Cuiling1,2, JI Binghan1,2, HAN Mengyao1,2, DU Xueyan1,2,*
1 School of Materials Science and Engineering,Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology,Lanzhou 730050, China
Abstract: Electromagnetic radiation pollution has become increasingly serious in the electronic, industrial, civil and military fields. High-performance electromagnetic interference (EMI) shielding films have recently become popular research topics. In this work, the sandwich-structured graphene (GE)/regenerated cellulose (RC)-Fe3O4/RC-GE/RC composite films were fabricated by immersed phase transformation and compression molding methods using RC as matrix, GE as conductive filler and nano Fe3O4 as magnetic filler. The influence of GE contents and the thicknesses on the EMI shielding properties of the composite films were studied, and their shielding mechanism was discussed. The results showed that the conductivity and EMI shielding effectiveness (SE) were enhanced by both the increase of GE content and the film thickness. The EMI SE of the composite films reached the maximum 24.7 dB at the GE content of 20% and the film thickness of 0.84 mm. Meanwhile, the tensile strength of the composite film was enhanced by the addition of GE, with a maximum value of 12.2 MPa. This study provides a feasible strategy to prepare cellulose-based composite films for electromagnetic shielding.
1 Chang C, Yue X, Hao B, et al. Carbon, 2020, 167, 31. 2 Tian Y Z. Environment Science and Management, 2021, 46(11), 137 (in Chinese). 田义宗.环境科学与管理, 2021, 46(11), 137. 3 Zhang K, Wu L F, Gui T J, et al. Mateials Reports, 2021, 35(Z2), 513 (in Chinese). 张凯, 吴连锋, 桂泰江, 等. 材料导报, 2021, 35(Z2), 513. 4 Wang M, Tang X H, Cai J H, et al. Carbon, 2021,177, 377. 5 Nallabothula H, Bhattacharjee Y, Samantara L, et al. ACS Omega, 2019, 4(1), 1781. 6 Liu W, Jia K, Gu J Y, et al. Mateials Reports, 2022, 36(9), 21020136 (in Chinese). 刘伟, 贾琨, 谷建宇, 等. 材料导报, 2022, 36(9), 21020136. 7 Liu L X, Chen W, Zhang H B, et al. Nano-Micro Letters, 2022, 14(1), 111. 8 Lee T W, Lee S E, Jeong Y G. ACS Applied Materials & Interfaces, 2016, 8(20), 13123. 9 Zhang H R, Sun X W, Heng Z G, et al. Industrial & Engineering Che-mistry Research, 2018, 57(50), 17152. 10 Zhang L Q, Yang S G, Li L, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 40156. 11 Li M M, Zhao Y J, Zhang M L, et al. Macromolecular Materials and Engineering, 2022, 307(7), 210899. 12 Zhang Y, Gao Q, Zhang S, et al. Journal of Collid and Interface Science, 2022, 614, 194. 13 Zhan Y H, Hao X H, Wang L, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14623. 14 Zhang L Q, Yang B, Teng J, et al. Journal of Materials Chemistry C, 2017, 5(12), 3130. 15 Wu C L, Li X P, Qin S L, et al. Journal of Lanzhou University of Technology, 2005(2), 73 (in Chinese). 吴翠玲, 李新平, 秦胜利, 等. 兰州理工大学学报, 2005(2), 73. 16 Cheng H R, Wei S N, Ji Y X, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 139. 17 Zhang M H, Ma Z L, Ma J Z, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1358 (in Chinese). 张梦辉, 马忠雷, 马建中, 等.复合材料学报, 2021, 38(5), 1358. 18 Tang X H, Li J, Wang Y, et al. Composites Part B: Engineering, 2020, 196, 108121. 19 Sheng A, Ren W, Yang Y Q, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105692. 20 Wang G, Liao X, Yang J M, et al. Composites Science and Technology, 2019, 184, 107847. 21 French A D. Cellulose, 2013, 21(2), 885. 22 Fan M S, Chen R, Lu Y Z, et al. Composites Communications, 2022, 25, 101293. 23 Abidi N, Cabrales L, Haigler C. Carbohydrate Polymers, 2014, 100, 9. 24 Yu W C, Wang T, Liu Y H, et al. Chemical Engineering Journal, 2020, 393, 124644. 25 Blas-Sevillano R H, Veramendi T, La Torre B, et al. Carbohydrate Polymers, 2018, 197, 246. 26 Lai S L, Zhang Z, Wang H. Fine Chemicals, 2021, 38(2), 310 (in Chinese). 来水利, 张昭, 王花.精细化工, 2021, 38(2), 310. 27 Shen L H, Bao J F, Wang D, et al. Nanoscale, 2013, 5(5), 2133. 28 Liu T, Xie X, Pang Y, et al. Journal of Materials Chemistry C, 2016, 4(8), 1727. 29 Qi H S, Liu J W, Gao S L, et al. Journal of Materials Chemistry A, 2013, 1, 2161. 30 Xie Y, Hong X W, Gao Y H, et al. Synthetic Metals, 2012, 162(7-8), 677. 31 Li Y, Xue B, Yang S D, et al. Chemical Engineering Journal, 2021, 410, 128356. 32 Zhang W B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105838. 33 Jiang D, Murugadoss V, Wang Y, et al. Polymer Reviews, 2019, 59(2), 280. 34 Zhang F D, Ren P G, Guo H, et al. Advanced Electronic Materials, 2021, 7(9), 2100496. 35 Singh A P, Mishera M, Hashim D P, et al. Carbon, 2015, 85, 79. 36 Jin K X, Xing J X, Liu X G, et al. Journal of Materials Chemistry A, 2021, 9, 26999. 37 Jian X, Wu B, Wei Y F, et al. ACS Applied Materials & Interfaces, 2016, 8(9), 6101. 38 Liu J G, Qin H S, Liu Y L. Materials, 2021, 14, 4757. 39 ZhangW B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 232, 105838.