Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070064-7    https://doi.org/10.11896/cldb.22070064
  无机非金属及其复合材料 |
三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能
刘亭亭1,2,*, 田国兴3, 赵欣3, 余新勇3, 毛超3, 于雪寒3, 陈玲3,4,*
1 东北石油大学秦皇岛校区,河北 秦皇岛 066004
2 东北石油大学化学化工学院,黑龙江省聚烯烃新材料重点实验室,黑龙江 大庆 163318
3 燕山大学环境与化学工程学院,河北省应用化学重点实验室,河北 秦皇岛 066004
4 燕山大学环境与化学工程学院,河北省水体重金属深度修复与资源利用重点实验室,河北 秦皇岛 066004
Synthesis of Ni-Co Hydroxide/Graphene Hydrogel Composites with Three-dimensional Network Structure and Their Electrochemical Performance
LIU Tingting1,2,*, TIAN Guoxing3, ZHAO Xin3, YU Xinyong3, MAO Chao3, YU Xuehan3, CHEN Ling3,4,*
1 Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, Hebei, China
2 Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
3 Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
4 Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 26694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用化学还原法对氧化石墨烯进行预还原,再将其与Ni(NO3)2·6H2O、Co(NO3)2·6H2O混合进行水热反应,得到三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料,通过调节氧化石墨烯的量获得电化学性能最佳的镍钴氢氧化物/石墨烯水凝胶(NiCo-OH/GH100),镍钴氢氧化物纳米片均匀分布在石墨烯表面。0.5 A/g电流密度下NiCo-OH/GH100的比容量为590 F/g,电流密度增加到10 A/g时比容量保持率为76.1%,展现出较高的比容量和良好的倍率性能。组装的NiCo-OH/GH100∥碳纳米管复合氮掺杂石墨烯水凝胶(NCGH)非对称超级电容器(ASC)在20 A/g下充放电循环10 000次,比容量保持率达92.9%,功率密度为375 W/kg时的能量密度达23.9 Wh/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘亭亭
田国兴
赵欣
余新勇
毛超
于雪寒
陈玲
关键词:  镍-钴氢氧化物  石墨烯水凝胶  超级电容器  电化学性能    
Abstract: In this work, graphene oxide (GO) was prereduced by chemical reduction method, and then mixed with Ni(NO3)2·6H2O and Co(NO3)2·6H2O for hydrothermal reaction to obtain the composites of nickel-cobalt hydroxide/graphene hydrogel with three-dimensional network structure. By adjusting the amount of GO, nickel-cobalt hydroxide/graphene hydrogel (NiCo-OH/GH100) with the best electrochemical performance was acquired, and nickel-cobalt hydroxide nanosheets were distributed on the surface of graphene uniformly. The specific capacitance of NiCo-OH/GH100 was 590 F/g at a current density of 0.5 A/g, and the retention rate was 76.1% when the current density increased to 10 A/g, showing high specific capacitance and good rate performance. The asymmetric supercapacitor (ASC) of NiCo-OH/GH100∥nitrogen-doped graphene hydrogel compounded with carbon nanotube (NCGH) was assembled, and the specific capacitance retention was 92.9% after 10 000 charge-discharge cycles at 20 A/g. The energy density reached 23.9 Wh/kg at the power density of 375 W/kg.
Key words:  Ni-Co hydroxide    graphene hydrogel    supercapacitor    electrochemical performance
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TM53  
  TB333  
基金资助: 国家自然科学基金青年基金(51904077)
通讯作者:  *陈玲,燕山大学环境与化学工程学院副教授、硕士研究生导师。2001年哈尔滨工业大学环境工程专业博士毕业后到燕山大学工作至今。目前主要从事超级电容器等方面的研究工作。发表论文20余篇,包括Chemelectrochem、Ioincs等。2008little@163.com;hhchen@ ysu.edu.cn   
作者简介:  刘亭亭,东北石油大学秦皇岛校区教授、硕士研究生导师。2003年东北师范大学生态学专业本科毕业后到东北石油大学工作至今,2015年燕山大学应用化学专业博士毕业。目前主要从事超级电容器方面的研究工作。发表论文20余篇,包括Materials Letters、Journal of Solid State Chemistry、RSC Advances等。
引用本文:    
刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
LIU Tingting, TIAN Guoxing, ZHAO Xin, YU Xinyong, MAO Chao, YU Xuehan, CHEN Ling. Synthesis of Ni-Co Hydroxide/Graphene Hydrogel Composites with Three-dimensional Network Structure and Their Electrochemical Performance. Materials Reports, 2024, 38(5): 22070064-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070064  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22070064
1 Qu H, Zhang X, Zhan J, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(6), 7380.
2 Kandula S, Shrestha K R, Rajeshkhanna G, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11555.
3 Gogotsi Y, Penner R M. ACS Nano, 2018, 12(3) , 2081.
4 Yuan L, Xin N, Liu Y, et al. Journal of Colloid and Interface Science, 2021, 599, 158.
5 Zhi M, Xiang C, Li J, et al. Nanoscale, 2013, 5(1), 72.
6 Pandolfo A G, Hollenkamp A F. Journal of Power Sources, 2006, 157(1), 11.
7 Ma H, He J, Xiong D B, et al. ACS Applied Materials & Interfaces, 2016, 8(3), 1992.
8 Wang W, Zhang N, Ye Z, et al. Inorganic Chemistry Frontiers, 2019, 6(2), 407.
9 Adán-Más A, Duarte R G, Silva T M, et al. Electrochimica Acta, 2017, 240, 323.
10 Kim D K, Hwang M, Ko D, et al. Electrochimica Acta, 2017, 246, 680.
11 Wang D, Wei A, Tian L, et al. Applied Surface Science, 2019, 483, 593.
12 Xie Y, Meng Z, Cai T, et al. ACS Applied Materials & Interfaces, 2015, 7(45), 25202.
13 Shang Y, Zhang J, Xu L, et al. Journal of Colloid and Interface Science, 2018, 531, 593.
14 Wang R, Jayakumar A, Xu C, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(7), 3736.
15 Hwang M, Kang J, Seong K D, et al. Electrochimica Acta, 2018, 270, 156.
16 Zhang S, Gao H, Zhou J, et al. Journal of Alloys and Compounds, 2019, 792, 474.
17 Dhibar S, Malik S. ACS Applied Materials & Interfaces, 2020, 12(48), 54053.
18 Jing C, Liu X, Liu X, et al. CrystEngComm, 2018, 20, 7428.
19 Liu Y, Teng X, Mi Y, et al. Journal of Materials Chemistry A, 2017, 5(46), 24407.
20 Li Y, Shan L, Sui Y, et al. Journal of Materials Science: Materials in Electronics, 2019, 30, 13360.
21 Huang M, Wang Y, Chen J, et al. Electrochimica Acta, 2021, 381, 138289.
22 Jin H, Yuan D, Zhu S, et al. Dalton Transactions, 2018, 47(26), 8706.
23 Wang R, Xuan H, Zhang G, et al. Applied Surface Science, 2020, 526, 146641.
24 Du Q, Su L, Hou L, et al. Journal of Alloys and Compounds, 2018, 740, 1051.
25 Li Y, Li J, Wang M, et al. Chemical Engineering Journal, 2019, 366, 33.
26 Min S, Zhao C, Zhang Z, et al. Journal of Materials Chemistry A, 2015, 3(7), 3641.
27 Wang X, Liu W S, Lu X, et al. Journal of Materials Chemistry, 2012, 22(43), 23114.
28 Wang X, Sumboja A, Lin M, et al. Nanoscale, 2012, 4, 7266.
29 Zhang J, Jiang J, Li H, et al. Energy & Environmental Science, 2011, 4(10), 4009.
30 Wang X, Liu J, Wang Y, et al. Materials Research Bulletin, 2014, 52, 89.
31 Ji J, Zhang L L, Ji H, et al. ACS Nano, 2013, 7(7), 6237.
32 Wang H, Holt C M B, Li Z, et al. Nano Research, 2012, 5(9), 605.
33 Ding R, Qi L, Jia M, et al. Electrochimica Acta, 2013, 107, 494.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[8] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[9] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[10] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[11] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[12] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[13] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[14] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[15] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed