Abstract: In order to further improve the electrochemical energy storage performance of activated biomass carbon, hierarchical porous carbon material (HPC) was obtained by activating the waste wood pre-extracted with DES using different proportions of KOH and cyclotriphosphazene deri-vatives (HCPCP-K) as co-activators. Among the carbon materials obtained, the optimal carbon material HPC-1-4.35 possesses a high surface area and a total pore volume up to 1 987.43 m2/g and 1.313 6 cm3/g, respectively, and the corresponding proportion of microporous and mesoporous was close to 1∶1. Electrochemical tests showed that HPC-1-4.35 electrode displayed excellent specific capacitance of 555 F/g at a current density of 1 A/g and 398 F/g at a current density of 20 A/g, which revealed excellent rate capability. Meanwhile, in the two-electrode system, the assembled symmetric supercapacitors HPC-1-4.35∥HPC-1-4.35 exhibited a higher specific energy density of 30.6 Wh/kg with an excellent power density of 179.7 W/kg at room temperature and a perfect energy density of 9.8 Wh/kg at a power density of 63.07 W/kg at -20 ℃. Furthermore, it showed good cycling stability because the capacitance retention rate was 85% after 5 000 cycles of charging and discharging at a current density of 2 A/g.
邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
ZOU Zhenyu, LIU Wei, LI Pengjuan, LI Xiaoli. Preparation of Hierarchical Porous Carbon Materials by the Coactivation Method and Their Energy Storage Properties. Materials Reports, 2025, 39(3): 23080193-7.
1 Baig M M, Khan M A, Gul I H, et al. Journal of Electronic Materials, 2023, 52 (9), 5775. 2 Abdullin K A, Gabdullin M T, Kalkozova Z K, et al. Energies, 2023, 16 (11), 19. 3 Koohi-Fayegh S, Rosen M A. Journal of Energy Storage, 2020, 27, 23. 4 Oyedotun K O, Ighalo J O, Amaku J F, et al. Journal of Electronic Materials, 2023, 52 (1), 96. 5 Kumar Y A, Koyyada G, Ramachandran T, et al. Nanomaterials, 2023, 13 (6), 35. 6 Arumugam B, Mayakrishnan G, Manickavasagam S K S, et al. Crystals, 2023, 13 (7), 28. 7 Duan H J, Liu Y J, Zhao X M. Textile Research Journal, 2023, 93 (15-16), 3884. 8 Liang Y, Huang G, Zhang Q, et al. Journal of Molecular Liquids, 2021, 330, 115580. 9 Shrestha L K, Shrestha R G, Shahi S, et al. Journal of Oleo Science, 2023, 72 (1), 11. 10 Zheng C Q, Gong H, Jiang Y W, et al. ACS Applied Nano Materials, 2023, 6 (15), 14136. 11 Song S J, Ma F W, Wu G, et al. Journal of Materials Chemistry A, 2015, 3 (35), 18154. 12 Feng H B, Hu H, Dong H W, et al. Journal of Power Sources, 2016, 302, 164. 13 Liang Q H, Ye L, Huang Z H, et al. Nanoscale, 2014, 6 (22), 13831. 14 Khalafallah D, Quan X Y, Ouyang C, et al. Renewable Energy, 2021, 170, 60. 15 Lan D W, Chen M Y, Liu Y C, et al. Journal of Materials Science-Materials in Electronics, 2020, 31 (21), 18541. 16 Correa C R, Otto T, Kruse A. Biomass & Bioenergy, 2017, 97, 53. 17 Xu C P, Arancon R A D, Labidi J, et al. Chemical Society Reviews, 2014, 43 (22), 7485. 18 Zhang X F, Ma X F, Hou T, et al. Angewandte Chemie-International Edition, 2019, 58 (22), 7366. 19 Wang Q, Wang Y, Zeng J J, et al. Flatchem, 2022, 34, 8. 20 Song Y, Xing X, Bu Y, et al. Modern Chemical Industry, 2022, 42 (3), 199. 21 Wang Y, Ruan W, Zhou Y. Modern Chemical Industry, 2023, 43 (2), 142. 22 Nazari N, Abadi M D M, Khachatourian A M, et al. Diamond and Related Materials, 2023, 137, 12. 23 Wang J A, Wang M F, Liang Y, et al. Physica B-Condensed Matter, 2023, 648, 6. 24 Bing B C, Li B, Jia H, et al. Chinese Journal of Applied Chemistry, 2009, 26 (7), 753(in Chinese). 邴柏春, 李斌, 贾贺, 等. 应用化学, 2009, 26 (7), 753. 25 Suopajarvi T, Ricci P, Karvonen V, et al. Industrial Crops and Pro-ducts, 2020, 145, 111956. 26 Nouri S, Haghseresht F. Adsorption-Journal of the International Adsorption Society, 2004, 10 (1), 69. 27 Qin C, Wang S R, Wang Z P, et al. Journal of Energy Storage, 2021, 33, 10. 28 Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Carbon, 2003, 41 (2), 267. 29 Kamiya A, Togawa T. The Bulletin of Mathematical Biophysics, 1972, 34 (4), 431. 30 Kamiya A, Togawa T, Yamamoto A. Bulletin of Mathematical Biology, 1974, 36 (3), 311. 31 Hulicova D, Kodama M, Hatori H. Chemistry of Materials, 2006, 18 (9), 2318. 32 Liu M X, Gan L H, Xiong W, et al. Energy & Fuels, 2013, 27 (2), 1168. 33 Xu S W, Zhao Y Q, Xu Y X, et al. Journal of Power Sources, 2018, 401, 375. 34 Xue D F, Zhu D Z, Xiong W, et al. ACS Sustainable Chemistry & Engineering, 2019, 7 (7), 7024. 35 Zhang Y, Zhang L, Cheng L, et al. Applied Surface Science, 2021, 538, 8. 36 Chen J, Wei H M, Chen H J, et al. Electrochimica Acta, 2018, 271, 49. 37 Wang T, Zang X B, Wang X M Z, et al. Energy Storage Materials, 2020, 30, 367. 38 Liu H Y, Song H H, Chen X H, et al. Journal of Power Sources, 2015, 285, 303. 39 Qie L, Chen W M, Xu H H, et al. Energy & Environmental Science, 2013, 6 (8), 2497. 40 Qian W J, Sun F X, Xu Y H, et al. Energy & Environmental Science, 2014, 7 (1), 379. 41 Wu M, Xu S, Li X, et al. Journal of Energy Storage, 2021, 40, 8.