Abstract: Carrot carbon was used as carbon source, KOH activation method was developed to prepare highly qualified porous carbon with hierarchical pore size distribution and high specific surface area. The morphology and structure of the prepared materials were analyzed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and nitrogen adsorption-desorption. The results showed that the diffe-rent KOH to carbon ratio would cause different degree of structural changes of the carbon materials. When the alkali to carbon ratio was 2∶1, the pore structure distribution of the prepared carbon material showed the best with the specific surface area of 3 111.45 m2/g and total pore volume of 1.51 m3/g. The cyclic voltammetry and constant current charge-discharge tests showed that the specific capacitance of the electrodes prepared under the optimal activation conditions was 486 F/g at 6 mol/L KOH electrolyte and 0.5 A/g current density, which indicated that the material had good electrochemical performance. When the current density was increased by 20 times, the capacitance retention was 86% of the original, which indicated that the material had good rate performance. The capacitance retention was reserved as 97.3% after 8 000 test cycles at 10 A/g current density which demonstrated that the material had good stability. The energy density and power density of the water-based supercapacitor device assembled by the carrot-based hierarchical porous carbon electrode plate could reach 14.67 Wh/kg and 1 000 W/kg.
1 Huang Y, Zhu M S, Huang Y, et al. Advanced Materials, 2016, 28, 8344. 2 Simon P, Gogotsi Y, Dunn B. Materials Science, 2014, 343, 1210. 3 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7, 19. 4 Shao Y L, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118, 9233. 5 Yi J N, Qing Y, Wu C T, et al. Journal of Power Sources, 2017, 351, 130. 6 Li M, Du H R, Kuai L, et al. Angewandte Chemie, 2017, 56, 12649. 7 Li L, Jiang L L, Qing Y, et al. Journal of Materials Chemistry A, 2020, 8, 565. 8 Jiang L, Li L, Luo S, et al. Nanoscale, 2020, 12, 1465. 9 Ma Y Z, Guo Y, Zhou C, et al. Electrochimica Acta, 2016, 210, 897. 10 Yang P H, Xiao X, Li Y Z, et al. ACS Nano, 2013, 7, 2617. 11 Yang P, Chen Y, Yu X, et al. Nano Energy 2014, 10, 108. 12 Ballarin B, Boanini E, Montalto L, et al. Electrochimica Acta, 2019, 322, 134707. 13 Zhang S, Wu C L, Wu W, et al. Journal of Power Sources, 2019, 424, 1. 14 Guan L, Pan L, Peng T Y, et al. ACS Sustainable Chemistry & Engineering, DOI:10. 1021/acssuschemeng. 9b00050. 15 Wang J S, Qin F F, Guo Z Y, et al. ACS Sustainable Chemistry & Engineering, DOI:10. 1021/acssuschemeng. 9b01448. 16 Chang J L, Gao Z Y, Wang X R, et al. Electrochimica Acta, 2015, 157, 290. 17 Dai C C, Wan J F, Yang J, et al. Applied Surface Science, 2018, 444, 105. 18 Zhang Z, Li L, Qing Y, et al. The Journal of Physical Chemistry C, 2018, 122, 23852. 19 Xu G Y, Ding B, Pan J, et al. Journal of Materials Chemistry A, 2015, 3, 23268. 20 Yang W, Yang W, Song A L, et al. Journal of Power Sources, 2017, 359, 556. 21 Li J, Wu Y Z, Ma Y, et al. Functional wood, Science Press, China, 2011, pp.235 (in Chinese). 李坚, 吴玉章, 马岩, 等. 功能性木材, 科学出版社, 2011, pp. 235. 22 Li J X, Han K H, Wang D, et al. Carbon, 2020, 164, 42. 23 Elisadiki J, Jande Y A C, Machunda R L, et al. Carbon, 2019, 147, 582. 24 Liu W, Mei J, Liu G L, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 11595. 25 Xu Z H, Zhang X M, Liang Y, et al. Energy & Fuels, 2020, 34, 8966. 26 Sun Z X, Zheng M T, Hu H, et al. Chemical Engineering Journal, 2018, 336, 550. 27 Sun K L, Yu S S, Hu Z Z, et al. Electrochimica Acta, 2017, 231, 417. 28 Yang S, Wang S L, Liu X, et al. Carbon, 2019, 147, 540. 29 Guo D Y, Zheng C, Deng W J, et al. Journal of Solid State Electroche-mistry, 2016, 21, 1165. 30 Huang G G, Wang Y, Zhang T Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 672. 31 Jiang X C, Guo F Q, Jia X P, et al. Ionics, 2020, 26, 3655. 32 Li M L, Yu J, Wang X D, et al. Applied Surface Science, 2020, 530, 147230. 33 Su X L, Chen J R, Zheng G P, et al. Applied Surface Science, 2018, 436, 327. 34 Feng H B, Hu H, Dong H W, et al. Journal of Power Sources, 2016, 302, 164. 35 Zhang X H. Structure control and electrochemical performances of biomass-based carbon materials. Ph. D. Thesis, Taiyuan University of Technology, China, 2019 (in Chinese). 张晓华. 生物质基炭材料的结构调控及电化学性能研究. 博士学位论文, 太原理工大学, 2019. 36 Zhou J W. Preparation and application of biomass-based nitrogen-carbon materials. Master's Thesis, Northwest University, China, 2019(in Chinese). 周佳伟. 生物质基氮掺杂炭材料的制备与研究应用. 硕士学位论文, 西北大学, 2019. 37 Yang J, Liu Y F, Chen X M, et al. Acta Physico-Chimica Sinica, 2008(1), 13 (in Chinese). 杨静, 刘亚菲, 陈晓妹, 等. 物理化学学报, 2008(1), 13. 38 Zhang W L, Ran F. Materials Reports, 2020, 34(12), 12010 (in Chinese). 张文林, 冉奋. 材料导报, 2020, 34(12), 12010.