Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21060091-7    https://doi.org/10.11896/cldb.21060091
  无机非金属及其复合材料 |
胡萝卜基分级多孔炭材料的制备及电化学性能研究
王琼, 黄自知*, 胡云楚*, 袁利萍, 文瑞芝, 杨婷
中南林业科技大学理学院,长沙 410004
Preparation and Electrochemical Properties of Carrot-based Hierarchical Porous Carbon
WANG Qiong, HUANG Zizhi*, HU Yunchu*, YUAN Liping, WEN Ruizhi, YANG Ting
College of Science, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 5402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以胡萝卜为炭源,采用KOH对胡萝卜炭进行活化,制备出具有高比电容的分级多孔炭材料。利用SEM、X射线衍射分析、低温氮气吸脱附等手段对制备的材料进行形貌及结构分析,结果表明,不同碱炭比会造成炭材料不同程度的结构变化,在碱炭比为2∶1时,所制备的炭材料孔隙结构分布最佳,比表面积高达3 111.45 m2/g,总孔容为1.51 m3/g。循环伏安(CV)、恒流充放电(GCD)等电化学测试表明,在最佳活化条件下制备的胡萝卜基多孔炭材料制成的电极在6 mol/L KOH电解液、0.5 A/g电流密度条件下比电容为486 F/g,表明材料具有良好的电容性能;当电流密度提升20倍时,电容量保留为原来的86%,表明材料具有良好的倍率性能;10 A/g电流密度下经8 000次循环后,电容保持率为97.3%,表明材料具有良好的稳定性。胡萝卜基多孔炭材料制成的电极片所组装的水系超级电容器器件能量密度可达14.67 Wh/kg,功率密度为1 000 W/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王琼
黄自知
胡云楚
袁利萍
文瑞芝
杨婷
关键词:  胡萝卜  分级多孔  超级电容器  电化学性能    
Abstract: Carrot carbon was used as carbon source, KOH activation method was developed to prepare highly qualified porous carbon with hierarchical pore size distribution and high specific surface area. The morphology and structure of the prepared materials were analyzed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and nitrogen adsorption-desorption. The results showed that the diffe-rent KOH to carbon ratio would cause different degree of structural changes of the carbon materials. When the alkali to carbon ratio was 2∶1, the pore structure distribution of the prepared carbon material showed the best with the specific surface area of 3 111.45 m2/g and total pore volume of 1.51 m3/g. The cyclic voltammetry and constant current charge-discharge tests showed that the specific capacitance of the electrodes prepared under the optimal activation conditions was 486 F/g at 6 mol/L KOH electrolyte and 0.5 A/g current density, which indicated that the material had good electrochemical performance. When the current density was increased by 20 times, the capacitance retention was 86% of the original, which indicated that the material had good rate performance. The capacitance retention was reserved as 97.3% after 8 000 test cycles at 10 A/g current density which demonstrated that the material had good stability. The energy density and power density of the water-based supercapacitor device assembled by the carrot-based hierarchical porous carbon electrode plate could reach 14.67 Wh/kg and 1 000 W/kg.
Key words:  carrot    hierarchical porous    supercapacitor    electrochemical performance
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TQ424.1  
  TM53  
基金资助: 国家自然科学基金(31670563);湖南省高校创新平台开放基金(18K058);2020年高新技术产业科技创新引领计划 (2020GK2061);2021年中南林业科技大学大学生创新创业训练计划项目
通讯作者:  *黄自知,中南林业科技大学讲师。于2009年6月本科毕业于湖南工程学院,2012年中南林业科技大学应用化学专业硕士毕业后到中南林业科技大学工作至今。发表研究论文10余篇,申请获得国家发明专利授权6项,主要从事生物质材料电化学储能性能的研究。zhizihuang@126.com
胡云楚,中南林业科技大学教授、博士研究生导师。1982年本科毕业于湖南师范大学,2006年博士毕业于中南林业科技大学。主持完成国家自然科学基金面上项目4项,在国内外学术期刊发表研究论文100多篇,申请获得国家发明专利授权20多项,主要从事生物质资源高值利用的研究工作。hucsfu@163.com   
作者简介:  王琼,2019年6月于湘南学院获得工学学士学位。现为中南林业科技大学理学院硕士研究生,在胡云楚教授和黄自知老师的指导下进行研究。目前主要研究领域为生物质能源和超级电容器。
引用本文:    
王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
WANG Qiong, HUANG Zizhi, HU Yunchu, YUAN Liping, WEN Ruizhi, YANG Ting. Preparation and Electrochemical Properties of Carrot-based Hierarchical Porous Carbon. Materials Reports, 2023, 37(9): 21060091-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060091  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21060091
1 Huang Y, Zhu M S, Huang Y, et al. Advanced Materials, 2016, 28, 8344.
2 Simon P, Gogotsi Y, Dunn B. Materials Science, 2014, 343, 1210.
3 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7, 19.
4 Shao Y L, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118, 9233.
5 Yi J N, Qing Y, Wu C T, et al. Journal of Power Sources, 2017, 351, 130.
6 Li M, Du H R, Kuai L, et al. Angewandte Chemie, 2017, 56, 12649.
7 Li L, Jiang L L, Qing Y, et al. Journal of Materials Chemistry A, 2020, 8, 565.
8 Jiang L, Li L, Luo S, et al. Nanoscale, 2020, 12, 1465.
9 Ma Y Z, Guo Y, Zhou C, et al. Electrochimica Acta, 2016, 210, 897.
10 Yang P H, Xiao X, Li Y Z, et al. ACS Nano, 2013, 7, 2617.
11 Yang P, Chen Y, Yu X, et al. Nano Energy 2014, 10, 108.
12 Ballarin B, Boanini E, Montalto L, et al. Electrochimica Acta, 2019, 322, 134707.
13 Zhang S, Wu C L, Wu W, et al. Journal of Power Sources, 2019, 424, 1.
14 Guan L, Pan L, Peng T Y, et al. ACS Sustainable Chemistry & Engineering, DOI:10. 1021/acssuschemeng. 9b00050.
15 Wang J S, Qin F F, Guo Z Y, et al. ACS Sustainable Chemistry & Engineering, DOI:10. 1021/acssuschemeng. 9b01448.
16 Chang J L, Gao Z Y, Wang X R, et al. Electrochimica Acta, 2015, 157, 290.
17 Dai C C, Wan J F, Yang J, et al. Applied Surface Science, 2018, 444, 105.
18 Zhang Z, Li L, Qing Y, et al. The Journal of Physical Chemistry C, 2018, 122, 23852.
19 Xu G Y, Ding B, Pan J, et al. Journal of Materials Chemistry A, 2015, 3, 23268.
20 Yang W, Yang W, Song A L, et al. Journal of Power Sources, 2017, 359, 556.
21 Li J, Wu Y Z, Ma Y, et al. Functional wood, Science Press, China, 2011, pp.235 (in Chinese).
李坚, 吴玉章, 马岩, 等. 功能性木材, 科学出版社, 2011, pp. 235.
22 Li J X, Han K H, Wang D, et al. Carbon, 2020, 164, 42.
23 Elisadiki J, Jande Y A C, Machunda R L, et al. Carbon, 2019, 147, 582.
24 Liu W, Mei J, Liu G L, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 11595.
25 Xu Z H, Zhang X M, Liang Y, et al. Energy & Fuels, 2020, 34, 8966.
26 Sun Z X, Zheng M T, Hu H, et al. Chemical Engineering Journal, 2018, 336, 550.
27 Sun K L, Yu S S, Hu Z Z, et al. Electrochimica Acta, 2017, 231, 417.
28 Yang S, Wang S L, Liu X, et al. Carbon, 2019, 147, 540.
29 Guo D Y, Zheng C, Deng W J, et al. Journal of Solid State Electroche-mistry, 2016, 21, 1165.
30 Huang G G, Wang Y, Zhang T Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 672.
31 Jiang X C, Guo F Q, Jia X P, et al. Ionics, 2020, 26, 3655.
32 Li M L, Yu J, Wang X D, et al. Applied Surface Science, 2020, 530, 147230.
33 Su X L, Chen J R, Zheng G P, et al. Applied Surface Science, 2018, 436, 327.
34 Feng H B, Hu H, Dong H W, et al. Journal of Power Sources, 2016, 302, 164.
35 Zhang X H. Structure control and electrochemical performances of biomass-based carbon materials. Ph. D. Thesis, Taiyuan University of Technology, China, 2019 (in Chinese).
张晓华. 生物质基炭材料的结构调控及电化学性能研究. 博士学位论文, 太原理工大学, 2019.
36 Zhou J W. Preparation and application of biomass-based nitrogen-carbon materials. Master's Thesis, Northwest University, China, 2019(in Chinese).
周佳伟. 生物质基氮掺杂炭材料的制备与研究应用. 硕士学位论文, 西北大学, 2019.
37 Yang J, Liu Y F, Chen X M, et al. Acta Physico-Chimica Sinica, 2008(1), 13 (in Chinese).
杨静, 刘亚菲, 陈晓妹, 等. 物理化学学报, 2008(1), 13.
38 Zhang W L, Ran F. Materials Reports, 2020, 34(12), 12010 (in Chinese).
张文林, 冉奋. 材料导报, 2020, 34(12), 12010.
[1] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[2] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[3] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[4] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[5] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[6] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[7] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[8] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[9] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[10] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[11] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[12] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[13] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[14] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[15] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed